Research Progress on Uptake and Transport of Nanopesticides in Plants
Received date: 2020-01-14
Accepted date: 2020-06-05
Online published: 2020-06-05
Pesticide is a kind of chemicals to control crop diseases, pests and weeds for ensuring crop yields and food safety. Large particles, low effective utilization rate and large dosage are the major defects of the traditional pesticide formulations, leading to the destruction of the ecological environment. Pesticide nanoformulations can improve the dispersibility, stability and biological activity of traditional formulations. This is an important scientific approach to overcome the defects of traditional formulations, enhance the effective utilization rate of pesticides, and reduce environmental pollution. Elucidating the uptake and transport behavior of nanopesticides in plants is useful for understanding the interaction between nanopesticides and plants, revealing their uptake mechanism and bioaccumulation effect, and clarifying their biological safety. This article reviews the uptake and transport studies of nanopesticides in plants in four aspects: factors affecting the uptake and transport of nanopesticides in plants, mechanisms of uptake and transport, related analysis methods and their biological safety. This article also elaborates the modes and research methods of the uptake and transport of inorganic and organic nanopesticides in plants, and further proposes their potential applications. This piece will provide theoretical and technical basis for the design, construction and reasonable application of nanopesticides.
Key words: nanopesticide; plants; uptake and transport; analytical methods
Jing Li,Liang Guo,Haixin Cui,Bo Cui,Guoqiang Liu . Research Progress on Uptake and Transport of Nanopesticides in Plants[J]. Chinese Bulletin of Botany, 2020 , 55(4) : 513 -528 . DOI: 10.11983/CBB20008
[1] | 曹海微 (2014). 高效液相色谱-质谱联用技术测定食品中有害物质残留分析方法的研究. 硕士论文. 长春: 吉林大学. pp. 1-92. |
[2] | 陈娟妮, 蔡璘, 李石力, 杨亮, 丁伟 (2019). 纳米技术在植物病害防控中应用的研究进展. 植物保护学报 46, 142-150. |
[3] | 何顺, 高云昊, 万虎, 马洪菊, 李建洪 (2016). 基于介孔二氧化硅纳米粒子的农药可控释放研究进展. 农药学学报 18, 416-423. |
[4] | 李云桂 (2011). 典型有机污染物在植物角质层上的吸附行为与跨膜过程. 博士论文. 杭州: 浙江大学. pp. 1-130. |
[5] | 刘支前 (1992). 除草剂在植物体内的传导机理. 植物生理学通讯 28, 226-229. |
[6] | 钱玲 (2005). 环境化学物的生殖毒性研究进展. 环境与职业医学 22, 167-171. |
[7] | 陶琦 (2017). 质外体途径在超积累植物东南景天镉吸收与运输中的作用及其调控机制. 博士论文. 杭州: 浙江大学. pp. 1-148. |
[8] | 王润生, 刘义灏, 毛克亚 (2018). 磁性纳米颗粒细胞内吞评价方法研究及进展. 中国组织工程研究 22, 2921-2926. |
[9] | 王世芳, 韩平, 刘珊珊, 罗娜 (2019). 表面增强拉曼散射基底的制备及其在农药残留检测中的应用. 食品安全质量检测学报 10, 394-399. |
[10] | 谢寅峰, 姚晓华 (2009). 纳米TiO2对油松种子萌发及幼苗生长生理的影响. 西北植物学报 29, 2013-2018. |
[11] | 姚安庆, 杨健 (2012). 农药在植物体内的传导方式和农药传导生物学. 中国植保导刊 32, 14-18, 22. |
[12] | 张红霞, 袁凤辉, 关德新, 王安志, 吴家兵, 金昌杰 (2017). 维管植物木质部水分传输过程的影响因素及研究进展. 生态学杂志 36, 3281-3288. |
[13] | 郑永权 (2013). 农药残留研究进展与展望. 植物保护 39, 90-98. |
[14] | Adhikari T, Sarkar D, Mashayekhi H, Xing BS (2016). Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39, 99-105. |
[15] | Alsayeda H, Pascal-Lorber S, Nallanthigal C, Debrauwer L, Laurent F (2008). Transfer of the insecticide [14C] imidacloprid from soil to tomato plants. Environ Chem Lett 6, 229-234. |
[16] | Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015). Nanoscale copper in the soil-plant system-toxicity and underlying potential mechanisms. Environ Res 138, 306-325. |
[17] | Anjum NA, Rodrigo MAM, Moulick A, Heger Z, Kopel P, Zítka O, Adam V, Lukatkin AS, Duarte AC, Pereira E, Kizek R (2016). Transport phenomena of nanoparticles in plants and animals/humans. Environ Res 151, 233-243. |
[18] | Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014). Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014,641759. |
[19] | Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Rani PU, Desneux N (2018). Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91, 1-15. |
[20] | Aubert T, Burel A, Esnault MA, Cordier S, Grasset F, Cabello-Hurtado F (2012). Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J Hazard Mater 219-222, 111-118. |
[21] | Avellan A, Yun J, Zhang YL, Spielman-Sun E, Unrine JM, Thieme J, Li JR, Lombi E, Bland G, Lowry GV (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. Acs Nano 13, 5291-5305. |
[22] | Baruah S, Dutta J (2009). Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7, 191-204. |
[23] | Bombo AB, Pereira AES, Lusa MG, de Medeiros Oliveira E, de Oliveira JL, Campos EVR, de Jesus MB, Oliveira HC, Fraceto LF, Mayer JLS (2019). A mechanistic view of interactions of a nanoherbicide with target organism. J Agric Food Chem 67, 4453-4462. |
[24] | Buchholz A (2006). Characterization of the diffusion of non-electrolytes across plant cuticles: properties of the lipophilic pathway. J Exp Bot 57, 2501-2513. |
[25] | Campos EVR, Oliveira JL, Zavala-Betancourt SA, Ledezma AS, Arias E, Moggio I, Romero J, Fraceto LF (2016). Development of stained polymeric nanocapsules loaded with model drugs: use of a fluorescent poly (phenyleneethynylene). Colloids Surf B Biointerfaces 147, 442-449. |
[26] | Carpita N, Sabularse D, Montezinos D, Delmer DP (1979). Determination of the pore size of cell walls of living plant cells. Science 205, 1144-1147. |
[27] | Chen XB, Mao SS (2007). Titanium dioxide nanomaterials:? synthesis, properties, modifications, and applications. Chem Rev 107, 2891-2959. |
[28] | Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015). Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49, 2749-2756. |
[29] | Cui B, Feng L, Wang CX, Yang DS, Yu ML, Zeng ZH, Wang Y, Sun CJ, Zhao X, Cui HX (2016). Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization. PLoS One 11, e0160877. |
[30] | Davis RA, Rippner DA, Hausner SH, Parikh SJ, McElrone AJ, Sutcliffe JL (2017). In vivo tracking of copper-64 radiolabeled nanoparticles in Lactuca sativa. Environ Sci Technol 51, 12537-12546. |
[31] | Dawkar VV, Chikate YR, Lomate PR, Dholakia BB, Gupta VS, Giri AP (2013). Molecular insights into resistance mechanisms of lepidopteran insect pests against toxicants. J Proteome Res 12, 4727-4737. |
[32] | de la Rosa G, García-Casta?eda C, Vázquez-Nú?ez E, Alonso-Castro áJ, Basurto-Islas G, Mendoza á, Cruz-Jiménez G, Molina C (2017). Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110, 226-235. |
[33] | Deng YH, Zhao HJ, Qian Y, Lü L, Wang BB, Qiu XQ (2016). Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Ind Crops Prod 87, 191-197. |
[34] | Deng YQ, White JC, Xing BS (2014). Interactions between engineered nanomaterials and agricultural crops: implications for food safety. J Zhejiang Univ Sci A 15, 552-572. |
[35] | Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH (2006). Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J Exp Bot 57, 381-390. |
[36] | Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017). Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15, 11-23. |
[37] | Eichert T, Goldbach HE (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiol Plant 132, 491-502. |
[38] | Eichert T, Kurtz A, Steiner U, Goldbach HE (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and watersuspended nanoparticles. Physiol Plant 134, 151-160. |
[39] | Elmer W, White JC (2018). The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56, 111-133. |
[40] | Gao JP, Garrison AW, Hoehamer C, Mazur CS, Lee WN (2000). Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48, 6114-6120. |
[41] | Ge J, Cui K, Yan HQ, Li Y, Chai YY, Liu XJ, Cheng JF, Yu XY (2017). Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants. Environ Pollut 226, 479-485. |
[42] | Ge J, Lu MX, Wang DL, Zhang ZY, Liu XJ, Yu XY (2016). Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake. Chemosphere 144, 201-206. |
[43] | Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma XM, Berg RH, Geisler M (2014). Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4, 301-318. |
[44] | Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li KG, Huang Y, Chen YS, Kolmakov A, Ma XM (2012). Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7, 323-337. |
[45] | Gogos A, Knauer K, Bucheli TD (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60, 9781-9792. |
[46] | Guan WX, Tang LM, Wang Y, Cui HX (2018). Fabrication of an effective avermectin nanoemulsion using a cleavable succinic ester emulsifier. J Agric Food Chem 66, 7568-7576. |
[47] | Hischem?ller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009). In vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5, 278-284. |
[48] | Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001). The exodermis: a variable apoplastic barrier. J Exp Bot 52, 2245-2264. |
[49] | Hou RY, Tong MM, Gao WJ, Wang L, Yang TX, He LL (2017). Investigation of degradation and penetration behaviors of dimethoate on and in spinach leaves using in situ SERS and LC-MS. Food Chem 237, 305-311. |
[50] | Jansen S, Choat B, Pletsers A (2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96, 409-419. |
[51] | Judy JD, Bertsch PM (2014). Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems. Adv Agron 123, 1-64. |
[52] | Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012). Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46, 8467-8474. |
[53] | Kah M, Beulke S, Tiede K, Hofmann T (2013). Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43, 1823-1867. |
[54] | Kah M, Hofmann T (2014). Nanopesticide research: current trends and future priorities. Environ Int 63, 224-235. |
[55] | Knowles A (2007). Recent developments of safer formulations of agrochemicals. Environmentalist 28, 35-44. |
[56] | Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015). Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol 81, 631-637. |
[57] | Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2019). Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294, 131-153. |
[58] | Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu JJ, Wanzer MB, Woloschak GE, Smalle JA (2010). Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10, 2296-2302. |
[59] | Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014a). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264, 98-106. |
[60] | Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cecillon L, Ouerdane L, Legros S, Sarret G (2014b). Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273, 17-26. |
[61] | Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431, 197-208. |
[62] | Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K (2018). Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environ Toxicol Chem 37, 2029-2063. |
[63] | Lee WM, An YJ, Yoon H, Kweon HS (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat(Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27, 1915-1921. |
[64] | Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM (2017). Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 11, 699-709. |
[65] | Liang J, Yu ML, Guo LY, Cui B, Zhao X, Sun CJ, Wang Y, Liu GQ, Cui HX, Zeng ZH (2018a). Bioinspired development of P(St-MAA)-Avermectin nanoparticles with high affinity for foliage to enhance folia retention. J Agric Food Chem 66, 6578-6584. |
[66] | Liang WL, Yu AX, Wang GD, Zheng F, Hu PT, Jia JL, Xu HH (2018b). A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L.) growth. Carbohydr Polym 199, 437-444. |
[67] | Liu Y, Wei FL, Wang YY, Zhu GN (2011). Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants. Colloids Surf A Physicochem Eng Asp 389, 90-96. |
[68] | Lossbroek TG, den Ouden H (1988). Tests with a solid solution of permethrin in a degradable polymer formulation as stomach and contact poison on Mamestra brassicae (Lep., Noctuidae) and Calandra granaria (Col., Curculionidae). J Appl Entomol 105, 355-359. |
[69] | Lucas WJ, Lee JY (2004). Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5, 712-726. |
[70] | Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010). Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408, 3053-3061. |
[71] | Masciangioli T, Zhang WX (2003). Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol 37, 102A-108A. |
[72] | Miralles P, Church TL, Harris AT (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46, 9224-9239. |
[73] | Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2016). Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52, 423-437. |
[74] | Müller RH, Peters K (1998). Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. Int J Pharm 160, 229-237. |
[75] | Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010). Nanoparticulate material delivery to plants. Plant Sci 179, 154-163. |
[76] | Nath J, Dror I, Landa P, Motkova K, Vanek T, Berkowitz B (2019). Isotopic labelling for sensitive detection of nanoparticle uptake and translocation in plants from hydroponic medium and soil. Environ Chem 16, 391-400. |
[77] | Nath J, Dror I, Landa P, Vanek T, Kaplan-Ashiri I, Berkowitz B (2018). Synthesis and characterization of isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants. Environ Pollut 242, 1827-1837. |
[78] | Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17, 372-386. |
[79] | Nguyen MH, Lee JS, Hwang IC, Park HJ (2014). Evaluation of penetration of nanocarriers into red pepper leaf using confocal laser scanning microscopy. Crop Prot 66, 61-66. |
[80] | Nguyen MH, Nguyen THN, Hwang IC, Bui CB, Park HJ (2016). Effects of the physical state of nanocarriers on their penetration into the root and upward transportation to the stem of soybean plants using confocal laser scanning microscopy. Crop Prot 87, 25-30. |
[81] | Ogunkunle CO, Jimoh MA, Asogwa NT, Viswanathan K, Vishwakarma V, Fatoba PO (2018). Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate. Ecotox Environ Safe 155, 86-93. |
[82] | Ouda SM (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens,Alternaria alternata and Botrytis cinerea. Res J Microbiol 9, 34-42. |
[83] | Palocci C, Valletta A, Chronopoulou L, Donati L, Bramosanti M, Brasili E, Baldan B, Pasqua G (2017). Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Rep 36, 1917-1928. |
[84] | Pan ZZ, Cui B, Zeng ZH, Feng L, Liu GQ, Cui HX, Pan HY (2015). Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method. J Nanomater 2015,123496. |
[85] | Peng C, Duan DC, Xu C, Chen YS, Sun LJ, Zhang H, Yuan XF, Zheng LR, Yang YQ, Yang JJ, Zhen XJ, Chen YX, Shi JY (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197, 99-107. |
[86] | Pereira AES, Grillo R, Mello NFS, Rosa AH, Fraceto LF (2014). Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268, 207-215. |
[87] | Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009). Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14, 399-408. |
[88] | Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Lu GQM (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3, 2801-2818. |
[89] | Prasad A, Astete CE, Bodoki AE, Windham M, Bodoki E, Sabliov CM (2018). Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants. J Agric Food Chem 66, 6544-6551. |
[90] | Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7, 1584-1594. |
[91] | Raliya R, Saharan V, Dimkpa C, Biswas P (2018). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66, 6487-6503. |
[92] | Ratte HT (1999). Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18, 89-108. |
[93] | Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59, 3485-3498. |
[94] | Rudall PJ, Bateman RM (2019). Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales. Biol Rev 94, 1179-1194. |
[95] | Sanzari I, Leone A, Ambrosone A (2019). Nanotechnology in plant science: to make a long story short. Front Bioeng Biotech 7, 120. |
[96] | Sarkar DJ, Singh A (2017). Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites. Carbohyd Polym 156, 303-311. |
[97] | Schwab F, Zhai GS, Kern M, Turner A, Schnoor JL, Wiesner MR (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10, 257-278. |
[98] | Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012). Synchrotron Micro-XRF and Micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46, 7637-7643. |
[99] | Shi JY, Peng C, Yang YQ, Yang JJ, Zhang H, Yuan XF, Chen YX, Hu TD (2014). Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8, 179-188. |
[100] | Song SJ, Wang YL, Xie J, Sun BH, Zhou NL, Shen H, Shen J (2019). Carboxymethyl chitosan modified carbon nanoparticle for controlled emamectin benzoate delivery: improved solubility, pH-responsive release, and sustainable pest control. ACS Appl Mater Interfaces 11, 34258-34267. |
[101] | Stamm MD, Heng-Moss TM, Baxendale FP, Siegfried BD, Blankenship EE, Nauen R (2016). Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans. Pest Manag Sci 72, 1099-1109. |
[102] | Stampoulis D, Sinha SK, White JC (2009). Assaydependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43, 9473-9479. |
[103] | Su YM, Ashworth V, Kim C, Adeleye AS, Rolshausen P, Roper C, White J, Jassby D (2019). Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ Sci Nano 6, 2311-2331. |
[104] | Sun DQ, Hussain HI, Yi ZF, Siegele R, Cresswell T, Kong LX, Cahill DM (2014). Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33, 1389-1402. |
[105] | Tamez C, Hernandez-Molina M, Hernandez-Viezcas JA, Gardea-Torresdey JL (2019). Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo). Sci Total Environ 665, 100-106. |
[106] | Tepfer M, Taylor IE (1981). The permeability of plant cell walls as measured by gel filtration chromatography. Science 213, 761-763. |
[107] | Thomas J, Kumar K, Praveen CKR (2011). Synthesis of Ag doped nano TiO2 as efficient solar photocatalyst for the degradation of endosulfan. Adv Sci Lett 4, 108-114. |
[108] | Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991). The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112, 739-747. |
[109] | Tong YJ, Wu Y, Zhao CY, Xu Y, Lu JQ, Xiang S, Zong FL, Wu XM (2017). Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. J Agric Food Chem 65, 7371-7378. |
[110] | Torney F, Trewyn BG, Lin VSY, Wang K (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2, 295-300. |
[111] | Torrent L, Iglesias M, Marguí E, Hidalgo M, Verdaguer D, Llorens L, Kodre A, Kav?i? A, Vogel-Miku? K (2020). Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. J Hazard Mater 384, 121201. |
[112] | Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017a). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110, 2-12. |
[113] | Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017b). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110, 167-177. |
[114] | Tripathi DK, Tripathi A, Shweta, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK (2017c). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8, 07. |
[115] | Valletta A, Chronopoulou L, Palocci C, Baldan B, Donati L, Pasqua G (2014). Poly (lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. J Nanopart Res 16, 2744. |
[116] | Volova T, Zhila N, Vinogradova O, Shumilova A, Prudnikova S, Shishatskaya E (2016). Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole. Environ Sci Pollut Res Int 23, 5243-5254. |
[117] | Wang CJ, Liu ZQ (2007). Foliar uptake of pesticides— present status and future challenge. Pestic Biochem Physiol 87, 1-8. |
[118] | Wang GD, Xiao YY, Xu HH, Hu PT, Liang WL, Xie LJ, Jia JL (2018). Development of multifunctional avermectin poly (succinimide) nanoparticles to improve bioactivity and transportation in rice. J Agric Food Chem 66, 11244-11253. |
[119] | Wang J, Lei ZW, Wen YJ, Mao GL, Wu HX, Xu HH (2014). A novel fluorescent conjugate applicable to visualize the translocation of glucose-fipronil. J Agric Food Chem 62, 8791-8798. |
[120] | Wang LJ, Li XF, Zhang GY, Dong JF, Eastoe J (2007). Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314, 230-235. |
[121] | Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a). Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21, 699-712. |
[122] | Wang ZY, Xie XY, Zhao J, Liu XY, Feng WQ, White JC, Xing BS (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46, 4434-4441. |
[123] | Wang ZY, Xu LN, Zhao J, Wang XK, White JC, Xing BS (2016b). CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ Sci Technol 50, 6008-6016. |
[124] | Wibowo D, Zhao CX, Peters BC, Middelberg APJ (2014). Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 62, 12504-12511. |
[125] | Wu CC, Dong FS, Mei XD, Ning J, She DM (2019). Distribution, dissipation, and metabolism of neonicotinoid insecticides in the cotton ecosystem under foliar spray and root irrigation. J Agric Food Chem 67, 12374-12381. |
[126] | Yan S, Hu Q, Li JH, Chao ZJ, Cai C, Yin MZ, Du XG, Shen J (2019). A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides. ACS Sustainable Chem Eng 7, 17406-17413. |
[127] | Yang CY, Powell CA, Duan YP, Shatters R, Zhang MQ (2015). Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus Huanglongbing. PLoS One 10, e0133826. |
[128] | Yang DS, Cui B, Wang CX, Zhao X, Zeng ZH, Wang Y, Sun CJ, Liu GQ, Cui HX (2017). Preparation and characterization of emamectin benzoate solid nanodispersion. J Nanomater 2017,6560780. |
[129] | Yang TX, Doherty J, Guo HY, Zhao B, Clark JM, Xing BS, Hou RY, He LL (2019). Real-time monitoring of pesticide translocation in tomato plants by Surface-Enhanced Raman Spectroscopy. Anal Chem 91, 2093-2099. |
[130] | Yang TX, Zhang ZY, Zhao B, Hou RY, Kinchla A, Clark JM, He LL (2016a). Real-time and in situ monitoring of pesticide penetration in edible leaves by Surface-Enhanced Raman Scattering Mapping. Anal Chem 88, 5243-5250. |
[131] | Yang TX, Zhao B, Hou RY, Zhang ZY, Kinchla AJ, Clark JM, He LL (2016b). Evaluation of the penetration of multiple classes of pesticides in fresh produce using Surface-Enhanced Raman Scattering Mapping. J Food Sci 81, T2891-T2901. |
[132] | Yu ML, Yao JW, Liang J, Zeng ZH, Cui B, Zhao X, Sun CJ, Wang Y, Liu GQ, Cui HX (2017). Development of functionalized abamectin poly (lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv 7, 11271-11280. |
[133] | Zhang P, Ma YH, Zhang ZY (2015). Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Siddiqui MH, Al-Whaibi MH, Mohammad F, eds. Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants. Cham: Springer. pp. 77-99. |
[134] | Zhang Y, Klepsch M, Jansen S (2017). Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. Plant Cell Environ 40, 2133-2146. |
[135] | Zhao LJ, Huang YX, Hu J, Zhou HJ, Adeleye AS, Keller AA (2016). 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ Sci Technol 50, 2000-2010. |
[136] | Zhao LJ, Peralta-Videa JR, Ren MH, Varela-Ramirez A, Li CQ, Hernandez-Viezcas JA, Aguilera RJ, Gardea- Torresdey JL (2012). Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184, 1-8. |
[137] | Zhao PY, Cao LD, Ma DK, Zhou ZL, Huang QL, Pan CP (2017). Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants. Molecules 22, 817. |
[138] | Zhao PY, Cao LD, Ma DK, Zhou ZL, Huang QL, Pan CP (2018a). Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale 10, 1798-1806. |
[139] | Zhao PY, Yuan WL, Xu CL, Li FM, Cao LD, Huang QL (2018b). Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers. J Agric Food Chem 66, 11592-11600. |
[140] | Zhao X, Cui HX, Wang Y, Sun CJ, Cui B, Zeng ZH (2018c). Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem 66, 6504-6512. |
[141] | Zhu F, Liu XG, Cao LD, Cao C, Li FM, Chen CJ, Xu CL, Huang QL, Du FP (2018). Uptake and distribution of fenoxanil-loaded mesoporous silica nanoparticles in rice plants. Int J Mol Sci 19, 2854. |
/
〈 | 〉 |