Research Advances in Inositol Phosphate Signaling in Regulating Pollen Development and Pollen Tube Growth

Expand
  • College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China

Received date: 2012-07-16

  Revised date: 2012-11-12

  Online published: 2013-04-07

Supported by

National Natural Science Foundation of China;Hebei Natural Science foundation

Abstract

The phosphoinositide signal systems are based on inositol phospholipid metabolism and circulation and include a variety of phosphatidylinositol phosphate molecules and phospholipases and kinases. The signaling molecules are involved in regulating the plant growth and the response to environment. Much research has used genetic and molecular approaches to confirm that the inositol phospholipids and their phospholipid turnover products participate in pollen development and pollen tube growth, which are important for plant growth. In this review, we summarize research progress in investigating signal molecules as regulators in pollen development and pollen tube growth.

Cite this article

Kang Gao, Juan Du, Mingyu Hou, Jing Zhao, Yanyun Pan . Research Advances in Inositol Phosphate Signaling in Regulating Pollen Development and Pollen Tube Growth[J]. Chinese Bulletin of Botany, 2013 , 48(2) : 210 -218 . DOI: 10.3724/SP.J.1259.2013.00210

References

吕世友, 李彦舫, 陈祖铿, 林金星 (2001). 花粉发育的研究进展.植物学通报18, 340-346.
马力耕, 徐小冬, 崔素娟, 孙大业 (1998). 肌醇磷脂信号途径参与胞外钙调素启动花粉萌发和花粉管伸长. 植物生理学报, 24, 196-200.
王昕, 崔素娟, 马力耕, 孙大业 (2000). PLC-IP3 信号途径参与花粉管伸长调控的显微注射实验. 植物学报, 42, 697-702.
孙大业, 崔素娟, 孙颖 (2010). 细胞信号转导(第4版). 北京, 科学出版社. pp. 147-162.
Berridge MJ (1993). Inositol trisphosphate and calcium signalling. Nature, 361, 315-325.
Camacho L, Malhó R (2003). Endo-Exocytosis in the pollen tube apex is differentially regulated by [Ca2+] c and GTPases. J. Exptl. Bot. 54, 83-92.
Chapman LA, Goring DR (2011). Misregulation of phosphoinositides in Arabidopsis thaliana decreases pollen hydration and maternal fertility. Sex Plant Reprod, 24, 319-26.
Cheung AY, Chen CY, Tao LZ, Andreyeva T, Twell D, Wu HM (2003). Regulation of pollen tube growth by Rac-like GTPases. J Exp Bot. 54, 73-81.
de Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM (2005). Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell. 17, 2564-79.
Ding Y, Ndamukong I, Zhao Y, Xia Y, Riethoven JJ, Jones DR, Divecha N, Avramova Z (2012). Divergent Functions of the Myotubularin (MTM) Homologs AtMTM1 and AtMTM2 in Arabidopsis thaliana, Evolution of the plant MTM family. Plant J. 70, 866-78.
Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006). Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell. 18, 1438–1453.
Franklin-Tong VE, Drobak BK, Allan AC, Watkins P, Trewavas AJ (1996). Growth of pollen tubes of Papaver rhoeas is regulated by a slow moving calcium wave propagated by inositol 1,4,5- trisphosphate. Plant Cell, 8, 1305-1321.
Fujiki Y, Yoshimoto K, Ohsumi Y (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol, 143, 1132-9.
Funderburk SF, Wang QJ, Yue Z (2010). The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol, 20, 355-62.
Gao XQ and Zhang XS (2012), Metabolism and roles of phosphatidylinositol 3-phosphate in pollen development and pollen tube growth in Arabidopsis. Plant Signaling & Behavior 7, 1–5.
Ghars MA, Richard L, Lefebvre-De Vos D, Leprince AS, Parre E, Bordenave M, Abdelly C, Savouré A (2012). Phospholipases C and D Modulate Proline Accumulation in Thellungiella halophila/salsuginea Differently According to the Severity of Salt or Hyperosmotic Stress. Plant Cell Physiol. 53, 183-92.
Gupta R, Ting JT, Sokolov LN, Johnson SA, Luan S (2002). A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell. 14, 2495-507.
Harrison-Lowe NJ, Olsen LJ (2008). Autophagy Protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy. 4, 339-48.
Helling D, Possart A, Cottier S, Klahre U, Kost B (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell. 18, 3519–3534
Helsper JPFG, Heemskerk JW, Veerkamp JH (1987). Cytosolic and particulate phosphotidylinositol phospholipase C activities in pollen tubes of Lilium longiflorum. Plant Physiol. 71, 120-126.
Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995). A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA. 92, 3903-3907.
Insall RH, Weiner OD (2001). PIP3, PIP2, and cell movement–similar messages, different meanings? Dev Cell. 1,743–747.
Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol- 4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell. 20, 3312–3330.
Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I (2011). Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J. 65, 453-68.
Kim HJ, Ok SH, Bahn SC, Jang J, Oh SA, Park SK, Twell D, Ryu SB, Shin JS (2011). Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. Plant Cell. 23, 94-110.
Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol. 145,317–330.
Lee CB, Kim S, McClure B (2009) A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. Plant Physiol. 149,791–802.
Lee Y, Kim ES, Choi Y, Hwang I, Staiger CJ, Chung YY, Lee Y (2008). The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol. 147, 1886-97.
Ma L, Xu X, Cui S, Sun D (1999). The presence of a heterotrimeric G protein and its role in signal transduction of extracelluar calmodulin in pollen germination and tube growth. Plant Cell, 11, 351-1363.
Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Ann Rev Plant Biol 54,265–306.
Mizushima N (2007). Autophagy, process and function. Genes Dev. 21, 2861-73.
Monteiro D, Liu Q, Lisboa S, Scherer GEF, Quader H, Malho R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+] c and membrane secretion. J Exp Bot. 56, 1665–1674.
Munnik T, Testerink C (2009). Plant phospholipid signaling, "in a nutshell". J Lipid Res. 50, Suppl:S260-5.
Munnik T, Vermeer JE (2010). Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ. 33, 655-669.
Nakamura K, Sano H (2009). A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants. Plant Signal Behav. 4, 26-29.
Pan YY, Wang X, Ma LG, Sun DY (2005). Characterization of Phosphatidylinositol-Specific Phospholipase C (PI-PLC) from Lilium daviddi Pollen. Plant Cell Physiol. 46, 1657-1665.
Parre E, Ghars MA, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savouré A (2007). Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol, 144, 503-512.
Potocky′ M, Elia′sˇ M, Profotova′ B, Novotna′ Z, Valentova′ O, Z ˇ a′rsky′ V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta. 217,122–130.
Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J (2007). Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res. 17, 249-63.
Roth MG (2004). Phosphoinositides in constitutive membrane traffic. Physiol Rev. 84,699–730.
Shi J, Gonzales RA, Bhattacharyya MK (1995). Characterization of a plasma membrane-associated phopshinositide-specific phospholipase C from soybean. Plant Jour. 8, 381-390.
Sousa E, Kost B, Malho R (2008). Arabidopsis phosphatidylinositol- 4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell. 20,3050– 3064.
Tasma IM, Brendel V, Whitham SA, Bhattacharyya MK (2008). Expression and evolution of the phosphoinsitide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem. 46, 627 -637.
Ul-Rehman R, Silva PA, Malhó R (2011). Localization of Arabidopsis SYP125 syntaxin in the plasma membrane sub-apical and distal zones of growing pollen tubes. Plant Signal Behav. 6, 665-70.
van Leeuwen W, Okresz L, Bogre L, Munnik T (2004) Learning the lipid language of plant signalling. Trends Plant Sci. 9, 378–384.
Vermeer J, van Leeuwen W, Toben?a-Santamaria R, Laxalt A, Jones D, Divecha N, Gadella TJ, Munnik T (2006) Visualization of PtdIns3P dynamics in living plant cells. Plant J. 47, 687–700.
Voigt B, Timmers ACJ, Samaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluska F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Euro J Cell Biol. 84, 609–621.
Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR (2008). Enhanced expression of phospholipase C1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta. 227, 1127-1140.
Wang X (2005). Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 139, 566–573.
Whitley P, Hinz S, Doughty J (2009). Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol. 151, 1812-22.
Xu N, Gao XQ, Zhao XY, Zhu DZ, Zhou LZ, Zhang XS (2011). Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. Plant Mol Biol. 77, 251-60.
Xue HW, Chen X, Mei Y (2009).Function and regulation of phospholipid signalling in plants. Biochem. J. 421, 145–156.
Yamamoto YT, Conkling MA, Sussex IM, Irish VF (1995). An Arabidopsis cDNA Related to Animal Phosphoinositide-Specific Phospholipase C Genes. Plant Physiol. 107, 1029-1030.
Yan Zhang and Sheila McCormick (2009) AGCVIII Kinases, at the Crossroads of Cellular Signaling. Trends Plant Sci. 14, 689-695.
Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of arabidopsis pollen tubes. Plant Physiol. 152, 2200-2210.
Zhao Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z (2010). Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell. 22, 4031-44.
Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012). Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J. 69, 689-700.
Outlines

/