TECHNIQUE AND METHOD

Using 3D-SIM Structure Illumination Microscope to Localize Proteins in Plant Subcellular Compartments

Expand
  • 1College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
    2Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
    3Institute of Frontier Medical Sciences, Jilin University, Changchun 130021, China
    4College of Life Sciences, Harbin Normal University, Harbin 150080, China

? These authors contributed equally to this paper

Received date: 2015-02-16

  Accepted date: 2015-03-30

  Online published: 2015-05-07

Abstract

The information on protein subcellular localization is important to elucidate protein function, and imaging technology is one of the important approaches to visualize protein localization. However, conventional microscopy techniques can barely resolve details of subcellular structures mainly because of the auto-fluorescence interference with their limited imaging resolution. In recent years, super-resolution optical imaging technologies have been successfully used in human and animal cell research for their 8-fold higher spacial resolution over laser confocal microscopy. Application of these technologies in plant cells has not been reported, probably due to the peculiarity of plant cells. Here, we report the successful use of DeltaVision OMX microscope technology for visualizing Zea mays sucrose synthase 1 (ZmSUS-SH1) around chloroplast grana in transgenic tobacco epidermal cells. OMX microscopy can overcome the cellular chlorophyll fluorescence interference in imaging fluorescent fusion proteins. We also developed an optimized sample preparation protocol for using DeltaVision OMX microscope technology with plant materials.

Cite this article

Yue Liu, Yuejia Yin, Chongyang Liang, Dianshuai Huang, Yang Wang, Yanzhi Liu, Yao Dou, Shudan Feng, Dongyun Hao . Using 3D-SIM Structure Illumination Microscope to Localize Proteins in Plant Subcellular Compartments[J]. Chinese Bulletin of Botany, 2015 , 50(4) : 495 -503 . DOI: 10.11983/CBB15038

References

1 龚燕华, 彭小忠 (2010). 蛋白质相互作用及亚细胞定位原理与技术. 北京: 中国协和医科大学出版社. pp. 210-234.
2 李楠, 王黎明, 杨军 (1996). 激光共聚焦显微镜的原理和应用. 军医进修学院学报 17, 232-234.
3 邢浩然, 刘丽娟, 刘国振 (2006). 植物蛋白质的亚细胞定位研究进展. 华北农学报 21(增刊), 1-6.
4 赵启韬, 苗俊英 (2003). 激光共聚焦显微镜在生物医学研究中的应用. 北京生物医学工程 22, 52-54.
5 Brown ACN, Oddos S, Dobbie IM, Alakoskela JM, Parton RM, Eissmann P, Neil MAA, Dunsby C, French PMW, Davis I, Davis DM (2011). Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super resolution microscopy.PLoS Biol 9, 1-18.
6 Coltharp C, Xiao J (2012). Superresolution microscopy for microbiology.Cell Microbiol 14, 1808-1818.
7 Dickerson D (2010). A study of chromatin dynamics during transcription by fluorescence light microscopy. Doctoral Thesis. Dundee: University of Dundee.
8 Dobbie IM, King E, Parton RM, Carlton PM, Sedat JW, Swedlow JR, Davis I (2011). OMX: a new platform for multimodal, multichannel wide-field imaging. In: Goldmam RD, ed. Live Cell Imaging, 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press. pp. 898-909.
9 Gustafsson MGL (2008). Super-resolution light microscopy goes live.Nat Methods 5, 385-387.
10 Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008). Three-dimensional resolution doubling in wide- field fluorescence microscopy by structured illumination.Biophys J 94, 4957-4970.
11 Masters BR (2010). The development of fluorescence microscopy. eLS 1-9, doi: 10.1002/9780470015902. a0022- 093.
12 Minden JS, Agard DA, Sedat JW, Alberts BM (1989). Direct cell lineage analysis in Drosophila melanogaster by time-lapse, three-dimensional optical microscopy of living embryos.J Cell Biol 109, 505-516.
13 Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MGL, Leonhardt H, Sedat JW (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy.Science 320, 1332-1336.
14 Seabold GK, Wang PY, Petralia RS, Chang K, Zhou A, McDermott MI, Wang YX, Milgram SL, Wenthold RJ (2012). Dileucine and PDZ-binding motifs mediate synaptic adhesion-like molecule 1 (SALM1) trafficking in hippocampal neurons.J Biol Chem 287, 4470-4484.
15 Swedlow JR (2012). Innovation in biological microscopy: current status and future directions.BioEssays 34, 333-340.
16 Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MFB (2013). Centriole distal appendages promote membrane docking, leading to cilia initiation.Genes Dev 27, 163-168.
17 van de Corput MPC, de Boer E, Knoch TA, van Cappellen WA, Quintanilla A, Ferrand L, Grosveld FG (2012). Super-resolution imaging reveals three-dimensional folding dynamics of the β-globin locus upon gene activation.J Cell Sci 125, 4630-4639.
18 Weil TT, Xanthakis D, Parton R, Dobbie I, Rabouille C, Gavis ER, Davis I (2010). Distinguishing direct from indirect roles for bicoid mRNA localization factors.Deve- lopment 137, 169-176.
19 Zheng CY, Wang YX, Kachar B, Petralia RS (2011). Differential localization of SAP102 and PSD-95 is revealed in hippocampal spines using super-resolution light microscopy.Commun Integr Biol 4, 104-105.
Outlines

/