[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Identification and Gene Mapping of the nrl7 Mutant in Rice
Received date: 2015-11-16
Revised date: 2016-01-25
"> Online published: 2016-05-24
Leaf morphology is an important trait of ideotype breeding; moderate rolling of leaves can enhance light-use efficiency. Study of genes that control leaf morphology can enrich the theory of ideal plant architecture in rice. We found a novel spontaneous mutant nrl7 with narrow rolled leaves in the japonica C275 population that can be stably inherited. Compared to the wild type, the leaves of nrl7 narrowed and rolled inward, the number of vascular bundles between the leaf midrib and the adjacent vein was reduced to one, and the bulliform cells showed significant morphological change. Nevertheless, the plant height, filled grains per panicle, and filled grain weight per panicle in the mutant were 88.46%, 69.77%, 68.98%, respectively, of that in the wild type. Photosynthetic rate was significantly higher in the mutant than the wild type and accounted for 17% of that in C275. Transpiration rate did not differ. Map-based cloning revealed NRL7 on chromosome 3 between markers RM5444 and MM1300, delimited to a 185.14 kb region. These results will lay a good
foundation for molecular cloning and functional analysis of NRL7.
Key words: rice; narrow rolled leaf mutant; gene mapping
Wei Wang, Jiayu Wang, Shenglong Yang, Jin Liu, Xiaoyan Dong, Guojiao Wang, Wenfu Chen . Identification and Gene Mapping of the nrl7 Mutant in Rice[J]. Chinese Bulletin of Botany, 2016 , 51(3) : 290 -295 . DOI: 10.11983/CBB15205
[1] 郎有忠, 张祖建, 顾兴友, 等. 水稻卷叶性状生理生态效应的研究Ⅰ. 姿态、群体构成及广分布特征[J]. 作物学报, 2004, 30(8): 806-810
[2] 陆江锋, 郎有忠, 张祖建, 等. 水稻一组卷叶近等基因系的株形、群体结构和光合特性比较[J]. 扬州大学学报: 农业与生命科学版, 2005, 6(2): 56-60
[3] 陈宗祥, 潘学彪, 胡俊. 水稻卷叶性状及理想株型的关系[J]. 江苏农业研究, 2001, 22(4): 88-91
[4] 沈福成. 关于水稻卷叶性状在育种中利用的几点看法[J]. 贵州农业科学, 1983, (5): 6-8
[5] 陈代波, 程式华, 曹立勇. 水稻窄叶性状的研究进展[J]. 中国稻米, 2010, 16(3): 1-4
[6] 余东, 吴海滨, 杨文韬, 等. 水稻单侧卷叶突变体B157遗传分析及基因初步定位[J]. 分子植物育种, 2008, 6(2): 220-226
[7] 曾生元, 郭 旻, 李 敏, 等. 个水稻动态窄叶突变体的鉴定和基因定位[J]. 科学通报, 2010, 55(21): 210-2111
[8] 潘存红, 李 磊, 陈宗祥, 等.一个水稻卷叶基因 rl(t)的精细定位[J].中国水稻科学, 2011, 25(5): 455-460
[9] Zou L P, Sun X H, hang Z G, et al. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice[J]. Plant Physiology, 2011,156 ( 3 ) : 1589-1602
[10] 王德仲, 桑贤春, 游小庆, 等. 水稻细卷叶突变体 nrl2(t)的遗传分析和基因定位[J]. 作物学报, 2011, 37(7): 1159-1166
[11] Shi Z Y, Wang J, Wan X S, et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J]. Planta, 2007, 226 (1) : 99-108
[12] Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7controls leaf shape mediated by auxin in rice[J]. Molecular Genetics Genomics: MGG, 2008, 279(5): 499-507
[13] Qi J, Qian Q, Bu Q Y, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiology, 2008, 147(4): 1947-195
[14] 李仕贵, 马玉清, 何平, 等. 一个未知的卷叶基因的识别和定位[J]. 四川农业大学学报, 1998, 16(4): 391-393
[15] 邵元健, 陈宗祥, 张亚芳, 等. 一个水稻卷叶主效 QTL的定位及其物理图谱的构建[J]. 遗传学报, 2005, 32(5): 501-506
[16] Xiang J J, Zhang G H, Qian Q, et al. SEMI-ROLLED LEAF1 encodes a putative glycosyl phosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells[J]. Plant Physiology, 2012, 159(4): 1488-1500
[17] Shi Y F, Chen J, Liu W Q, et al. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice( Oryza sativa L.) [J]. Science in China Series C: Life Sciences, 2009, 52(9): 885-890
[18] Yan C J, Yan S, Zhang Z Q, et al.Genetic analysis and gene fine mapping for a rice novel mutant(rl9(t)) with rolling leaf character[J]. Chinese Science Bulletin,2006, 51(1): 63-69
[19] 罗远章, 赵芳明, 桑贤春, 等. 水稻新型卷叶突变体rl12(t)的遗传分析和基��定[J]. 作物学报, 2009, 35(11): 1967-1972
[20] Fang L K, Zhao F M, Cong Y F, et al. Rolling-leaf14 is a 2OG-Fe (Ⅱ) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves[J]. Plant Biotechnology Journal, 2012, 10(5): 524-532
[21] Cho S H, Yoo S C, Zhang H T, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A( OsWOX3A) and function in leaf, spikelet, tiller and lateral root development[J]. New Phytologist, 2013, 198(4): 1071-1084
[22] Hu J, Zhu L, Zeng D L, et al. Identification and characterization of NARROW and ROLLED LEAF1, a novel gene regulating leaf morphology and plant architecture in rice[J]. Plant Molecular Biology, 2010, 73(3): 283-292
[23] 高艳红, 吕川根, 王茂青, 等. 水稻卷叶性状QTL的初步定位[J]. 江苏农业学报, 2007, 23(1): 5-10
[24] 李和平. 植物显微技术[M]. 北京: 科学出版社, 2009: 9-48
[25] Rogers S O, Bendich A J. Extraction of DNA from plant tissues[J]. Plant Mol Biol Manual, 1989, pp73-83
[26] Scarpella E, Barkoulas M, Tsiantis M. Control of leaf and vein development by auxin[J]. Cold Spring Harb Perspect Biol, 2010, 2(1): a001511
[27] Dettmer J, Elo A, Helariutta Y. Hormone interactions during vascular development[J]. Plant Mol Biol, 2009, 69(4): 347-360
[28] Micol L J, Hake S. The development of plant leaves[J]. Plant Physiol, 2003, 131(2): 389-394
[29] 严 松, 严长杰, 顾铭洪. 植物叶发育的分子机理[J]. 遗传, 2008, 30(9): 1127-1135
[30] Shao Y J, Pan C H, Chen Z X, et al. Fine mapping of an incomplete recessive gene for leaf rolling in rice (Oryza sativa L.) [J]. Chin Sci Bull, 2005, 50(21): 2466-2472
[31] Zhang G H, Xu Q, Zhu X D, et al. SHALLOTLIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. Plant Cell, 2009, 2(3): 719-735
[32] Zhang, Z.H., Deng, Y.J., Tan, J., et al. A genome-wide microsatellite polymorphism database for the Indica and Japonica rice[J]. DNA Research, 2007, 14(1): 37-45
[33] 陈宗祥, 胡俊, 陈刚, 潘学彪. RL(t)卷叶基因对杂交稻经济性状的影响[J].作物学报, 2004, 30(5): 465-69
/
〈 | 〉 |