INVITED REVIEW

Impact of Plant Introduction or Domestication on the Recent 500 Years of Civilization and Scientific Research Value of Plant Living Collections

Expand
  • 1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
    2Bureau of Scientific and Technological Development, Chinese Academy of Sciences, Beijing 100864, China

? These authors contributed equally to this paper

Received date: 2014-09-10

  Accepted date: 2014-12-26

  Online published: 2015-04-08

Abstract

In the recent 500 years, plant introduction or domestication and internationalization of introduced plant crops have profoundly changed the world agricultural productions and have had far-reaching impacts on the history of human civilization. Whether in Western colonial history or in the Ming and Qing dynasties of China, successful introduction and domestication of important crop plants have immeasurably changed economic and social developments and history. Plant living collections are the core of botanical gardens and the “soul” by inheriting the contexts and achievements of scientific research of modern botanical gardens in the past five centuries. Plant living collections are also a foundation of botanical garden-based life science and biotechnology and supporting facilities for other disciplines and are of fundamental importance for current and future developments of botanical gardens. Living collections of plant-based research in botanical gardens are multi-disciplinary, of critical importance for contemporary basic biology and also closely connected to economic and social prosperity and our daily life.

Cite this article

Hongwen Huang, Ziyuan Duan, Jingping Liao, Zheng Zhang . Impact of Plant Introduction or Domestication on the Recent 500 Years of Civilization and Scientific Research Value of Plant Living Collections[J]. Chinese Bulletin of Botany, 2015 , 50(3) : 280 -294 . DOI: 10.3724/SP.J.1259.2015.00280

References

1 曹玲 (2004).明清美洲粮食作物传入中国研究综述. 古今农业 (2), 95-103.
2 陈树平 (1980).玉米和番薯在中国传播情况研究. 中国社会科学 (3), 187-204.
3 陈志一 (1984).关于“占城稻”. 中国农史 (3), 24-31.
4 甘泉, 徐海根, 李明阳 (2005).外来入侵物种造成的间接经济损失估算模型. 南京工业大学学报: 自然科学版 27, 78-80.
5 葛剑雄 (1991). 中国人口发展史. 福州: 福建人民出版社. pp. 263.
6 葛全胜, 戴君虎, 郑景云 (2010).物候学研究进展及中国现代物候学面临的挑战. 中国科学院院刊 25, 310-316.
7 何炳棣 (1979).美洲作物的引进、传播及其对中国粮食生产的影响(三). 世界农业 (6), 25-31.
8 何炳棣(葛剑雄译) (1989). 1368-1953中国人口研究. 上海: 上海古籍出版社.
9 何炳棣(葛剑雄译) (2000).明初以降人口及其相关问题. 北京: 生活读书新知三联书店.
10 黄宏文 (2013). 猕猴桃属: 分类·资源·驯化·栽培. 北京: 科学出版社.
11 黄宏文 (2014). 中国迁地栽培植物志名录. 北京: 科学出版社.
12 黄宏文, 张征 (2012).中国植物引种栽培及迁地保护的现状与展望. 生物多样性 20, 559-571.
13 刘旭 (2003). 中国生物种质资源科学报告. 北京: 科学出版社.
14 刘旭 (2012).中国作物栽培历史的阶段划分和传统农业形成与发展. 中国农史 (2), 3-16.
15 马金双 (2013). 中国入侵植物名录. 北京: 高等教育出版社.
16 孟繁清 (2009).元代海运与河运研究综述. 中国史研究动态 (9), 11-18.
17 彭少麟, 余作岳, 张文其, 曾小平 (1992).鹤山亚热带丘陵人工林群落分析. 植物生态学与地植物学学报 16, 1-10.
18 宋李键 (2012).工业革命为什么发生在18世纪的英国——一个全球视角的内生分析模型. 金融监管研究 (3), 93-106.
19 王思明 (2004).美洲原产作物的引种栽培及其对中国农业生产结构的影响. 中国农史 (2), 16-27.
20 王勇, 刘义飞, 刘松柏, 黄宏文 (2006).中国水柏枝属植物的地理分布、濒危状况及其保育策略. 武汉植物学研究 24, 455-463.
21 吴宾, 党晓虹 (2008).论中国古代粮食安全问题及其影响因素. 中国农史 (1), 24-31.
22 辛树帜 (1962). 我国果树历史的研究. 北京: 农业出版社.
23 徐文铎, 邹春静, 卜军 (1996).全球变暖对中国东北植被的影响及对策. 地理科学 16, 26-36.
24 游修龄 (1983).占城稻质疑. 农业考古 (1), 25-32.
25 余作岳, 彭少麟 (1997). 热带亚热带恢复生态学. 广州: 广东科学技术出版社.
26 郑殿升 (2011).中国引进的栽培植物. 植物遗传资源学报 12, 910-915.
27 郑景云, 葛全胜, 赵会霞 (2003).近40年中国植物物候对气候变化的响应研究. 中国农业气象 24, 28-32.
28 中国科学院生物质资源领域战略研究组 (2009). 中国至2050年生物质资源科技发展路线图. 北京: 科学出版社.
29 Bakkenes M, Alkemade JRM, Ihle R, Leemans R, Latour JB (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050.Glob Chang Biol 8, 390-407.
30 Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011). Has the Earth’s sixth mass extinction already arrived?Nature 471, 51-57.
31 Betancourt JL, Schwartz MD, Breshears DD, Cayan DR, Dettinger MD, Inouye DW, Post E, Reed BC (2005). Implementing a U.S. national phenology network.EOS 86, 539.
32 Brown D (1992). Four Gardens in One, the Royal Botanic Garden Edinburgh. Edinburgh: HMSO.
33 Chen DM, Zhang CL, Wu JP, Zhou LX, Lin YB, Fu SL (2011). Subtropical plantations are large carbon sinks: evidence from two monoculture plantations in South China. Agr Forest Meteor 151, 1214-1225.
34 Del Tredici P (2000). Plant exploration: a historic overview. In: Ault JR, ed. Plant Exploration: Protocols for the Present, Concerns for the Future, Symposium Proceedings, March 18-19, 1999. Glencoe, Illinois: Chicago Botanical Garden. pp. 1-5.
35 DeMarie ET (1996). The value of plant collections. Public Gard 11(2), 7, 31.
36 Dosmann MS (2006). Research in the garden: averting the collections crisis.Bot Rev 72, 207-234.
37 Dosmann M, Groover A (2012). The importance of living botanical collections for plant biology and the “next generation” of evo-devo research.Front Plant Sci 3, 137.
38 Engler A, Prantl K (1887-1915). Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten, insbesondere den Nutzpflanzen, unter Mitwirkung zahlreicher hervorragender Fachgelehrten. Leipzig: W. Engelmann. Retrieved 31 January 2014.
39 Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004). A compound from smoke that promotes seed germination.Science 305, 977.
40 Flemming S, Svenning J (2004). Potential impact of climatic change on the distribution of forest herbs in Europe.Ecogeography 27, 366-380.
41 Gallagher RV, Hughes L, Leishman MR (2009). Phe- nological trends among Australian alpine species: using herbarium records to identify climate-change indicators.Aust J Bot 57, 1-9.
42 Gorbunov YN (2001). The role of Russian botanic gardens in the study and development of economic plants. BGCI News 3, No. 7.
43 Gran Canaria Group (2006). The Gran Canaria Declaration II on Climate Change and Plants. Jardin Botanico Canario “Viera y Clavijo” and Botanic Gardens Conservation International, Gran Canaria, Spain.
44 Hardwick KA, Fiedler P, Lee LC, Pavlik B, Hobbs RJ, Aronson J, Bidartondo M, Black E, Coates D, Daws MI, Dixon K, Elliott S, Ewing K, Gann G, Gibbons D, Gratzfeld J, Hamilton M, Hardman D, Harris J, Holmes PM, Jones M, Mabberley D, Mackenzie A, Magdalena C, Marrs R, Milliken W, Mills A, Lughadha EN, Ramsay M, Smith P, Taylor N, Trivedi C, Way M, Whaley O, Hopper SD (2011). The role of botanic gardens in the science and practice of ecological restoration.Conserv Biol 25, 265-275.
45 Harper G, Morris L (2007). Flowering and climate change ― part II.Sibbaldia 5, 25-42.
46 Hawkins B, Sharrock S, Havens K (2008). Plants and Climate Change: Which Future? Richmond: Botanic Gardens Conservation International.
47 Hay I (1995). Science in the Pleasure Ground: A History of the Arnold Arboretum. Boston: Northeastern University Press.
48 Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change.Nature 424, 901-908.
49 Heywood VH (2011). The role of botanic gardens as resource and introduction centres in the face of global changes.Biodivers Conserv 20, 221-239.
50 Heywood VH, Sharrock S (2013). European Code of Conduct for Botanic Gardens on Invasive Alien Species. Richmond: Council of Europe, Strasbourg, Botanic Gardens Conservation International.
51 Ho PT (1955). The introduction of American food plants into China.Am Anthropol 57, 191-201.
52 Hobhouse H (1985). Seeds of Change: Five Plants that Transformed Mankind. London: Sidgwick & Jackson.
53 Holttum ARE (1950). The Zingiberaceae of the Malay Peninsula.Gard Bull Singapore 13, 1-249.
54 Huang HW, Oldfield S, Qian H (2013). Global significance of plant diversity in China. In: Hong DY, Blackmore S, eds. Plants of China. Beijing: Science Press. pp. 7-34.
55 Jordan III WR, Gilpin ME, Aber JD (1987). Restoration ecology: ecological restoration as a technique for basic research. In: Jordan III WR, Gilpin ME, Aber JD, eds. Restoration Ecology: A Synthetic Approach to Ecological Research. Cambridge: Cambridge University Press. pp. 3-21.
56 Juma C (1989). The Gene Hunters: Biotechnology and the Scramble for Seeds. Princeton: Princeton University Press.
57 Kang M, Tao JJ, Wang J, Ren C, Qi QW, Xiang QY, Huang HW (2014). Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. New Phytol 202, 1371-1381.
58 Karlson DT, Xiang QY, Stirm VE, Shirazi AM, Ashworth EN (2004). Phylogenetic analyses in Cornus substantiate ancestry of xylem supercooling freezing behavior and reveal lineage of desiccation related proteins.Plant Physiol 135, 1654-1665.
59 Kettunen M, Genovesi P, Gollasch S, Pagad S, Starfinger U, ten Brink P, Shine C (2008). Technical support to EU strategy on invasive species (IS)-assessment of the impacts of IS in Europe and the EU (Final module report for the European Commission). Brussels: Institute for European Environmental Policy (IEEP).
60 Leong-Skornickova J (2007). Ginger research in the Gardens. Gardenwise,the Newsletter of the Singapore Botanic Gardens 28, 6-7.
61 Li QJ, Xu ZF, Kress WJ, Xia YM, Zhang L, Deng XB, Gao JY, Bai ZL (2001). Flexible style that encourages outcrossing.Nature 410, 432.
62 Lighty RW (1984). Toward a more rational approach to plant collections.Longwood Program Seminars 16, 5-9.
63 Liu YF, Wang Y, Huang HW (2006). High interpopulation genetic differentiation and unidirectional linear migration patterns in Myricaria laxiflora (Tamaricaceae), an endemic riparian plant in the Three Gorges Valley of the Yangtze River.Am J Bot 93, 206-215.
64 Liu YF, Wang Y, Huang HW (2009). Species-level phylogeographical history of Myricaria plants in the mountain ranges of western China and the origin of M. laxiflora in the Three Gorges mountain region.Mol Ecol 18, 2700-2712.
65 Lovett J (2007). Climate change and Africa.BGjournal 4, 30-33.
66 Malanima P (2006). Energy crisis and growth 1650-1850: the European deviation in a comparative perspective.J Global Hist 1, 101-121.
67 McLean CJ, Lovett JC, Küper W, Hannah L, Sommer HJ, Barthlott W, Termansen M, Smith GF, Tokumine S, Taplin JRD (2005). African plant diversity and climate change.Ann Mo Bot Gard 92, 139-152.
68 Medbury S (1991). Taxonomy and garden design: a successful marriage? Public Gard 6(3), 29-32, 42-43.
69 Menzel A (2003). Trends in phenological phases in Europe between 1951 and 1996.Int J Biometeorol 44, 76-81.
70 Menzel A, Fabian P (1999). Growing season extended in Europe.Nature 397, 659-659.
71 Miller-Rushing AJ, Primack RB, Primack D, Mukunda S (2006). Photographs and herbarium specimens as tools to document phonological changes in response to global warming.Am J Bot 93, 1667-1674.
72 Minelli A (1995). The Botanical Garden of Padua 1545- 1995. Venice: Marsilio.
73 Penuelas J, Matamala R (1990). Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase.J Exp Bot 41, 1119-1124.
74 Petrie WMF (1939). The Making of Egypt. London: Sheldon Press. pp. 68.
75 Primack D, Imbres C, Primack RB, Miller-Rushing AJ, Del Tredici P (2004). Herbarium specimens demonstrate earlier flowering times in response to warming in Boston.Am J Bot 91, 1260-1264.
76 Primack RB, Miller-Rushing AJ (2009). The role of botanical gardens in climate change research.New Phytol 182, 303-313.
77 Raven PH (1981). Research in botanical gardens.Bot Jahrb Syst 102, 53-72.
78 Ren H, Zhang QM, Wang ZF, Guo QF, Wang J, Liu N, Liang KM (2010). Conservation and possible reintroduction of an endangered plant based on an analysis of community ecology: a case study of Primulina tabacum Hance in China.Plant Spec Biol 25, 43-50.
79 Rice PF (1972). Proceedings of the symposium on a national botanical garden system for Canada. Hamilton, Ontariao: Technical Bulletin #6, Royal Botanical Gardens. pp. 33.
80 Sommer H, Küper W, Barthlott W (2006). Implications of climate change on Africa’s plant diversity. Talk at the Open Science Conference: Global Environmental Ch- ange-Regional Challenges.
81 Stuart D (2002). The Plants That Shaped Our Gardens. Cambridge: Harvard University Press.
82 Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004). Extinction risk from climate change.Nature 427, 145-148.
83 van Vliet AJH, de Groot RS, Bellens Y, Braun P, Bruegger R, Bruns E, Clevers J, Estreguil C, Flechsig M, Jeanneret F, Maggi M, Martens P, Menne B, Menzel A, Sparks T (2003). The European phenology network.Int J Biometeorol 47, 202-212.
84 Van der Veken S, Hermy M, Vellend M, Knapen A, Verheyen K (2008). Garden plants get a head start on climate change.Front Ecol Environ 6, 212-216.
85 Wang YQ, Zhang DX, Renner SS, Chen ZY (2004). Botany: a new self-pollination mechanism.Nature 431, 39-40.
86 Xu ZF (1997). The status and strategy for ex situ conservation of plant diversity in Chinese botanic gardens-discus- sion of principles and methodologies of ex situ conservation for plant diversity. In: Schei PJ, Wang S, eds. Conserving China’s Biodiversity. Beijing: China Environmental Science Press. pp. 79-95.
87 Zhang YB, Ma KP (2008). Geographic distribution patterns and status assessment of threatened plants in China.Biodivers Conserv 17, 1783-1798.
88 Zhou GY, Liu SG, Li ZA, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006). Old-growth forests can accumulate carbon in soils.Science 314, 1417.
Outlines

/