[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
RESEARCH ARTICLE

Effects of Exogenous Thermospermine and Synthesis Inhibitor on Low-temperature Stress Tolerance of Wucai

  • FENG Jin-Shou ,
  • XIE Song-Mei ,
  • YU Bing-Jiao ,
  • WANG Zhang-Gang ,
  • YUAN Ling-Yun ,
  • HOU Jin-Feng ,
  • CHEN Guo-Hu ,
  • TANG Xiao-Yan ,
  • YU Wen-Jie ,
  • WU Jian-Jiang
Expand
  • 1College of Horticulture, Anhui Agricultural University, Hefei 230036; 2Anhui Wanjiang Vegetable Industrial Technology Institute, Ma’anshan 238200

Received date: 2025-04-01

  Revised date: 2025-06-30

  Online published: 2025-07-21

Abstract

INTRODUCTION: Thermospermine, as a structural isomer of spermine, is an important substrate involved in plant growth and development, as well as responses to biotic and abiotic stress. 


RATIONALE: At present, there are few reports on the relationships between thermospermine and low-temperature stress, for which a primary analysis of their relationships in wucai was conducted. Firstly, the optimal concentration of exogenous thermospermine alleviating the damage of wucai caused by low temperature was analyzed. Then, thermospermine synthesis inhibitor combined with the selected appropriate concentration of thermospermine was used under low temperature condition in order to further analyze whether thermospermine plays a role in the resistance to low-temperature stress.


RESULTS: At lower concentrations of thermospermine (0.05 and 0.1 mmol·L–1), electrolyte leakage, hydrogen peroxide, superoxide anion and malondialdehyde contents decreased with different degrees, and the dry and fresh weight increased, while the effects weakened with the increase of thermospermine concentration. The ranking order of the average membership function values obtained decreased gradually with the increase of the concentration, and the score of 0.05 mmol·L–1 thermospermine was the highest. The addition of thermospermine synthesis inhibitor under low temperature made the two materials with different low-temperature tolerance accumulate more hydrogen peroxide and superoxide anion, electrolyte leakage and malondialdehyde content further increased. In addition, application of thermospermine at the same time can alleviate the damage of low temperature stress aggravated by inhibitor treatment, which was associated with higher activities of SOD and POD.


CONCLUSION: 0.05 mmol·L–1 thermospermine could effectively alleviate the damage of low temperature on wucai seedlings, and thermospermine synthesis is closely related to the low-temperature stress tolerance of wucai, which may improve low-temperature tolerance through maintaining higher antioxidant enzyme activities, especially SOD and POD.



Phenotype (A), (B), H2O2 (C) and •O2 (D) staining of two wucai materials with different low-temperature stress tolerance (‘W18’, low-temperature tolerant type, and ‘SW-1’, low-temperature sensitive type) under treatment of thermospermine synthesis inhibitor.

Cite this article

FENG Jin-Shou , XIE Song-Mei , YU Bing-Jiao , WANG Zhang-Gang , YUAN Ling-Yun , HOU Jin-Feng , CHEN Guo-Hu , TANG Xiao-Yan , YU Wen-Jie , WU Jian-Jiang .

Effects of Exogenous Thermospermine and Synthesis Inhibitor on Low-temperature Stress Tolerance of Wucai[J]. Chinese Bulletin of Botany, 0 : 1 -0 . DOI: 10.11983/CBB25051

[an error occurred while processing this directive]

References

[1]Alexieva V, Sergiev I, Mapelli S, Karanov E (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24(12): 1337-1344.
[2]Chen DD, Shao QS, Yin LH, Younis A, Zheng BS (2018). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in Plant Science, 9: 1945.
[3]Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R (2012). Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Science, 182: 49-58.
[4]Du HY, Chen BX, Li Q, Liu HP, Kurtenbach R (2022). Conjugated polyamines in root plasma membrane enhanced the tolerance of plum seedling to osmotic stress by stabilizing membrane structure and therefore elevating H+-ATPase activity. Frontiers in Plant Science, 12: 812360.
[5]Fan Junqiang, Lu Xiaoming, Wang Huiwen, Wu Junyan, Liu Lijun, Ma Li, Pu Yuanyuan, Li Xuecai, Sun Wancang (2023). Association between cold resistance and leaf hormone content of Brassica napus L. under low temperature stress. Jiangsu Journal of Agriculture Science, 39(1): 15-21. (in Chinese)
范军强, 路晓明, 王会文, 武军艳, 刘丽君, 马骊, 蒲媛媛, 李学才, 孙万仓 (2023). 低
温胁迫下甘蓝型冬油菜抗寒性与叶片激素含量的关联性. 江苏农业学报, 39(1): 15-21.
[6]Farsodia M, Mavadiya P, Trivedi M, Tandel K, Vyas V, Singh SK (2023). Overexpression of tomato ACL5 gene in tobacco leads to increased plant growth and delayed the onset of leaf senescence. Journal of Plant Growth, 42(8): 4764-4783.
[7]Gil-Mu?oz F, Delhomme N, Qui?ones A, Naval MD, Badenes ML, García-Gil MR (2020). Transcriptomic analysis reveals salt tolerance mechanisms present in date-plum persimmon rootstock (Diospyros lotus L.). Agronomy-Basel, 10(11): 1-19.
[8]Guo Qihang (2020). Metabolic pathway of the difference of Vc content in different genotypes of Wucai [Master Dissertation]. Hefei: Anhui Agricultural University. (in Chinese)
郭祺航 (2020). 不同基因型乌菜Vc含量差异的代谢途径研究[硕士论文]. 合肥: 安徽农业大学.
[9]He Meiwen (2019). Identification of S-adenosylmethionine synthetase gene and its salt stress response function in cucumber [Doctor Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese)
何美文 (2019). 黄瓜S-腺苷甲硫氨酸合成酶基因鉴定及其在响应盐胁迫中的功能[博士论文]. 南京: 南京农业大学.
[10]Li Chunhong, Zhang Leigang, Luo Shufen, Zhou Hongsheng, Hu Huali, Shao Bin, Li Pengxia (2023). Study on induction effect of preharvest treatment with exogenous polyamines on production of endogenous polyamines and ethylene in Pleurotus eryngii. Acta Agriculturae Jiangxi, 35(3): 51-59. (in Chinese)
黎春红, 张雷刚, 罗淑芬, 周宏胜, 胡花丽, 李鹏霞 (2023). 采前外源多胺预处理对杏鲍菇内源多胺及乙烯的诱导分析. 江西农业学报, 35(3): 51-59.
[11]Li Xiuling, Fan Jizheng, Liao Hongying, He Jingzhou, Zeng Yanhua, Long Qiangyu, Bu Zhaoyang (2021). Dynamic changes of endogenous hormones and polyamine in Paphiopedilum hirsutissimum leaves during floral bud formation. Chinese Journal of Tropical Crops, 42(11): 3236-3241. (in Chinese)
李秀玲, 范继征, 廖宏英, 何荆洲, 曾艳华, 龙蔷宇, 卜朝阳 (2021). 带叶兜兰成花过程中叶片内源激素与多胺含量的变化动态. 热带作物学报, 42(11): 3236-3241.
[12]Li Xianfeng (2022). Functional analysis of OsACL5, a gene putatively encoding thermospermine synthase [ Master Dissertation]. Yangzhou: Yangzhou University. (in Chinese)
李先锋 (2022). 水稻热精胺合成酶基因OsACL5的功能研究[硕士论文]. 扬州: 扬州大学.
[13]Liebsch D, Juvany M, Li ZH, Wang HL, Ziolkowska A. Chrobok D, Boussardon C, Wen X, Law SR, Janecková H, Brouwer B, Lindén P , Delhomme N, Stenlund H, Moritz T, Gardestr?m P, Guo HW, Keech O (2022). Metabolic control of arginine and ornithine levels paces the progression of leaf senescence. Plant Physiology, 189(4): 1943-1960.
[14]Liu Chang, Li Jiayin, Feng Guojun, Liu Dajun, Yan Zhishan, Yang Xiaoxu (2021). Effects of low temperature acclimation on endogenous polyamine content and expression of synthesis and decomposition genes in Phaseolus vulgaris. Northern Horticulture, 23: 30-37. (in Chinese)
刘畅, 李佳荫, 冯国军, 刘大军,闫志山,杨晓旭 (2021). 低温驯化对菜豆内源多胺含量及其合成分解基因表达的影响. 北方园艺, 23: 30-37.
[15]Liu Songhu, Zhang Haoshuang, Zhang Yuxue, Shen Jun, Zhu Qingsong (2024). Effects of exogenous EBR on seed germination and seedling growth of watermelon under NaCl stress. Northern Horticulture, 8: 1-12. (in Chinese)
刘松虎, 张浩爽, 张玉雪, 李慧杰, 申君, 朱庆松 (2024). 外源EBR 对 NaCl 胁迫下西瓜种子萌发及幼苗生长的影响. 北方园艺, 8: 1-12.
[16]Mai HF, Qin T, Wei H, Yu Z, Pang G, Liang ZM, Ni JS, Yang HS, Tang HY, Xiao LS, Liu HL, Liu TB (2023). Overexpression of OsACL5 triggers environmentally-dependent leaf rolling and reduces grain size in rice. Plant Biotechnology Journal, 22(4): 833-847.
[17]Marina M, Sirera FV, Rambla JL (2013). Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava[J]. Journal of Experimental Botany, 64(5): 1393-1402.
[18]Mo HJ, Wang XF, Zhang Y, Yang J, Ma ZY (2015). Cotton ACAULIS5 is involved in stem elongation and the plant defense response to Verticillium dahliae through thermospermine alteration. Plant Cell Reports, 34(11): 1975-1985.
[19]Sagor GHM, Takahashi H, Niitsu M, Takahashi Y, Berberich T, Kusano T (2012). Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. Plant Cell Reports, 31(7): 1227-1232.
[20]Shinohara S, Okamoto T, Motose H, Takahashi T (2019). Salt hypersensitivity is associated
with excessive xylem development in a thermospermine-deficient mutant of Arabidopsis thaliana. Plant Journal, 100(2): 374-383.
[21]Shu Sheng, Yuan Lingyun, Wang Changyi, Liu Tao, Fan Huaifu, Guo Shirong (2013). Research progress of plant growth regulation substances on improving stress resistance vegetable crops. Journal of Changjiang Vegetables, 6: 1-12. (in Chinese)
束胜, 袁凌云, 王长义, 刘涛, 樊怀福, 郭世荣 (2013). 植物生长调节物质提高蔬菜作物抗逆性的研究进展. 长江蔬菜, 16: 1-12.
[22]Sun Chao (2022). Anhui Wucai. Journal of Anhui Agricultural University (Social Science Edition), 31(3): 1-2. (in Chinese)
孙超 (2022). 乌青心黄菜叶皱,雪下味浓赛羊肉——安徽乌菜. 安徽农业大学学报(社会科学版), 31(3): 1-2.
[23]Takano A, Kakehi J, Takahashi T (2012). Thermospermine is not a minor polyamine in the plant kingdom[J]. Plant and Cell Physiology, 53(4): 606-616.
[24]Tian Wengang (2019). Preliminary study on the function of S-adenosylmethionine decarboxylase gene (GhSAMDC1) in cotton [Master Dissertation]. Shi He-zi: Shihezi University. (in Chinese)
田文刚 (2019). 棉花S-腺苷甲硫氨酸脱羧酶基因(GhSAMDC1)功能的初步研究[硕士论文]. 石河子: 石河子大学.
[25]Vuosku J, Karppinen K, Muilu-M?kel? R, Kusano T, Sagor GHM, Avia K, Alak?rpp? E, Kestil? J, Suokas M, Nickolov K, Hamberg L, Savolainen O, H?ggman H, Sarjala T (2018). Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants. Annals of Botany, 121(6): 1243-1256.
[26]Wang CG, Zhang MY, Zhou JJ, Gao X, Zhu SD, Yuan LY, Hou XL, Liu TK, Chen GH, Tang XY, Shan G, Hou, J (2022). Transcriptome analysis and differential gene expression profiling of wucai (Brassica campestris L.) in response to cold stress. BMC Genomics, 23(1): 137.
[27]Wang Xuemei (2023). Effects of 5-aminolevulinic acid on spinach salt and temperature stress [Master Dissertation]. Shanghai: Shanghai Normal University. (in Chinese)
王雪美 (2023). 5-氨基乙酰丙酸在菠菜盐和温度胁迫中的作用[硕士论文]. 上海: 上海师范大学.
[28]Wang Wenjuan, Shi Shang-li, He Long, Wu Bei, Liu Chanchan (2023). Accumulation and functions of polyamines in plants under drought stress. Acta Prataculturae Sinica, 32(06): 186-202. (in Chinese)
王文娟, 师尚礼, 何龙, 武蓓, 刘旵旵 (2023). 干旱胁迫下多胺在植物体内的积累及其作用. 草业学报, 32(06): 186-202.
[29]Wang Y, Gong XW, Liu WK, Kong Lei, Si XY, Guo SR, Sun J (2020). Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. Plant Physiology and Biochemistry, 152: 147-156.
[30]Wei Xiaokai, Luo Xiaobing, Zhao Jie, Yao Zhonghu (2024). Alleviating Effect of exogenous betaine on drought stress in flue-cured tobacco seedlings. Journal of Shanxi Agricultural Sciences, 52(1): 79-85. (in Chinese)
魏晓凯, 罗小兵, 赵杰, 姚忠虎 (2024). 外源甜菜碱对烤烟幼苗干旱胁迫的缓解效应. 山西农业科学, 52(1): 79-85.
[31]Wu JQ, Liu WK, Jahan MS, Shu S, Sun J, Guo SR (2022). Characterization of polyamine oxidase genes in cucumber and roles of CsPAO3 in response to salt stress. Environmental and Experimental Botany, 194: 104696.
[32]Xu Y, Burgess P, Zhang X, Huang BR (2016). Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. Journal of Experimental Botany, 67(6): 1979-1992.
[33]Xu Yaozhao (2020). The physiological and molecular mechanisms of winterturnip rape (Brassica rapa L.) responses to cold stress [Ph.D.Dissertation]. Lanzhou: Gansu Agricultural University. (in Chinese)
许耀照 (2020). 白菜型冬油菜抗寒生理基础及分子机理研究[博士论文]. 兰州: 甘肃农业大学.
[34]Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den XP, Zhang SQ (2016). Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant, Cell & Environment, 39: 245–258.
[35]Yoshimoto K, Takamura H, Kadota I, Motose H, Takahashi T (2016). Chemical control of xylem differentiation by thermospermine, xylemin, and auxin. Scientific Reports, 6: 21487.
[36]Yuan Zhouyu, Zhang Jianting, Liu Longbo, Zhang Liuzi, Gan Xing, Zhong Yan, Wang Liangju (2024). ALA up-regulated PpWRKY18 to enhance freezing tolerance of nectarine pistils. Horticultural Plant Journal, in press.
[37]Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio AF, Alcázar R (2017). Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell & Environment, 40(4): 527-542.
[38]Zhu Peipei, Qin Haoxiang, Zhang Jianxia (2023). Changes of endogenous hormones and polyamines during ovule development of stenospermocarpic seedless grape. Scientia Agricultura Sinica, 56(23): 4789-4800.(in Chinese)
朱佩佩, 秦浩翔, 张剑侠 (2023). 无核葡萄胚珠发育过程中内源激素及多胺含量的变化. 中国农业科学, 56(23): 4789-4800.
Outlines

/

[an error occurred while processing this directive]