[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]Establishment of Regeneration and Genetic Transformation System for Chrysanthemum × morifolium ‘Wandai Fengguang’
†These authors contributed equally to this paper
Received date: 2024-10-10
Accepted date: 2025-01-20
Online published: 2025-01-22
INTRODUCTION Chrysanthemum × morifolium is one of the ten most famous traditional flowers in China, and it has a rich variety of cultivars with diverse floral colour and shapes. However, varieties with blue floral colour have not been found in the natural chrysanthemum, therefore, breeding blue chrysanthemums has always been a goal pursued by researchers.
RATIONALE The total flavonoid extract of C. × morifolium ‘Wandai Fengguang’ could turn blue when adding appropriate concentration of Fe3+, and its living petal cells could also turn blue with the participation of Fe3+, which proved the feasibility of breeding blue chrysanthemums with Fe3+. Meanwhile, C. × morifolium ‘Wandai Fengguang’ can bloom both in summer and autumn, with early flowering and long flowering period, which is also an important material for the study of flowering period. Therefore, in order to cultivate blue chrysanthemums and achieve the targeted improvement of flowering period, it is particularly important to establish an efficient and stable regeneration and genetic transformation system for the C. × morifolium ‘Wandai Fengguang’. However, chrysanthemum has a long history of cultivation and complex genetic background, so the regeneration and genetic transformation system is not universal among different varieties.
RESULTS In this study, C. × morifolium ‘Wandai Fengguang’ was used as the experimental material to study the effects of different explant types with different combinations of plant growth regulators on its regeneration, and to investigate the effects of relevant factors on the efficiency of genetic transformation with the Agrobacterium-mediated genetic transformation method. The experimental results showed that the most suitable explants for the regeneration of C. × morifolium ‘Wandai Fengguang’ was the transverse thin cell layers (tTCLs), and the optimal culture medium was MS+1.5 mg∙L-1 6-BA+0.6 mg∙L-1 NAA. The highest differentiation rate was 70.06% and an adventitious bud coefficient was 3.37. The kanamycin selection pressures for the differentiation of the tTCLs and the adventitious bud rooting were 7.5 mg∙L-1 and 5.0 mg∙L-1, respectively. The optimal procedure for genetic transformation was pre-culture for 1 day, OD600=0.8, treatment for 5 minutes, and co-culture in the dark for 3 days. Fifteen resistant plantlets were screened on kanamycin medium, and two positive plantlets were confirmed by PCR amplification, with a transformation efficiency of 13.33%.
CONCLUSION This study laid the foundation for the gene function analysis and targeted improvement molecular breeding of chrysanthemum by using this kind of unique variety resource, and provided reference for the establishment of regeneration and transformation system for other chrysanthemum varieties.
Jingjing Li , Yanfei Li , Anqi Wang , Jiaying Wang , Chengyan Deng , Min Lu , Jianying Ma , Silan Dai . Establishment of Regeneration and Genetic Transformation System for Chrysanthemum × morifolium ‘Wandai Fengguang’[J]. Chinese Bulletin of Botany, 2025 , 60(4) : 597 -610 . DOI: 10.11983/CBB24151
[1] | 戴思兰, 洪艳 (2016). 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学 49, 529-542. |
[2] | 郭兆奎, 万秀清, 魏继承, 于艳华, 于金涛 (1999). 适于PCR分析的烤后烟叶DNA提取方法的研究. 中国烟草科学 20 (4), 5-8. |
[3] | 韩科厅 (2010). 花青素苷合成关键结构基因导入对菊花花色的影响. 博士论文. 北京: 北京林业大学. pp. 41-47. |
[4] | 何姗 (2020). 农杆菌介导CmWRKY15-1基因对菊花的遗传转化. 硕士论文. 沈阳: 沈阳农业大学. pp. 12-14. |
[5] | 洪艳, 白新祥, 孙卫, 贾锋炜, 戴思兰 (2012). 菊花品种花色表型数量分类研究. 园艺学报 39, 1330-1340. |
[6] | 贾红梅, 王碧玉, 刘迪, 毛洪玉 (2017). 农杆菌介导CBL基因对菊花品种‘C008’的转化. 西北林学院学报 32, 184-189. |
[7] | 姜宁宁, 付建新, 戴思兰 (2012). 中国传统菊花品种‘小林静’再生及转化体系的建立. 生物技术通报 28(4), 87-92. |
[8] | 李辛雷, 陈发棣, 王红, 房伟民, 管志勇 (2004). 菊花外植体再生体系的研究. 上海农业学报 20(2), 13-16. |
[9] | 李亚军, 李悦, 黄河, 戴思兰 (2018). 切花菊‘粉贵人’高效再生体系的建立. 见: 中国观赏园艺研究进展2018. 哈尔滨: 中国园艺学会观赏园艺专业委员会. pp. 427-434. |
[10] | 廖敏凌, 蒲娅, 武晓云, 马朝峰, 王文奎, 戴思兰 (2023). 平潭野菊混合瓣型株系再生体系的建立. 植物学报 58, 449-460. |
[11] | 刘明星 (2020). 盆栽小菊‘Branfountain Pink’遗传转化体系的建立. 硕士论文. 南京: 南京农业大学. pp. 14-30. |
[12] | 逯锦春, 曹丽娜, 佟冠杰, 王鑫颖, 张利英, 喻锌, 李荟芳, 李彦慧 (2022). 大花银莲花愈伤组织诱导及再生体系的建立. 植物学报 57, 217-226. |
[13] | 罗虹, 温小蕙, 周圆圆, 戴思兰 (2020). 芳香堆心菊离体再生体系的建立. 植物学报 55, 318-328. |
[14] | 马琦 (2020). 少芽切花菊分枝性及其遗传转化体系的研究. 硕士论文. 南京: 南京农业大学. pp. 23-30. |
[15] | 亓帅, 付建新, 王翊, 杨立文, 戴思兰 (2014). 甘菊下胚轴遗传转化体系的建立. 分子植物育种 12, 356-362. |
[16] | 曲爱爱 (2016). 菊花遗传转化体系建立及VtF3'5'H基因转化‘南农粉翠’的研究. 硕士论文. 南京: 南京农业大学. pp. 23-30. |
[17] | 时颂, 李青, 赵霜, 戴思兰, 李娜娜 (2013). 不同切花菊品种及处理对愈伤组织诱导和分化的影响. 东北林业大学学报 41, 77-81. |
[18] | 滕如萍, 张佳祺, 刘晓芬, 余璐, 张潮, 李方 (2025). 菊花‘神马’组培再生体系的优化. 分子植物育种 23, 1550-1557. |
[19] | 王碧玉 (2017). 菊花再生及遗传转化体系的研究. 硕士论文. 沈阳: 沈阳农业大学. pp. 8-15. |
[20] | 王想 (2018). 神农香菊单萜合酶基因的克隆及对野菊的遗传转化. 硕士论文. 哈尔滨: 东北林业大学. pp. 36-38. |
[21] | 王亚琴 (2020). 万寿菊再生和遗传转化体系的建立及重要性状的遗传分析. 硕士论文. 武汉: 华中农业大学. pp. 4-7. |
[22] | 王亚琴, 韦陆丹, 王文静, 刘宝骏, 张春玲, 张俊卫, 何燕红 (2020). 万寿菊再生体系的建立及优化. 植物学报 55, 749-759. |
[23] | 王自布, 莫国秀, 罗会兰, 张德英 (2015). 菊花不同外植体组培快繁及其再生体系的研究. 北方园艺 (18), 106-109. |
[24] | 魏曼曼, 王江民, Imtiaz M, 洪波 (2014). 菊花花色嵌合花瓣的离体培养及植株再生. 北京林业大学学报 36(4), 107-112. |
[25] | 武晓云, 廖敏凌, 李雪茹, 舒梓淳, 辛佳潼, 张伯晗, 戴思兰 (2024). 毛华菊3种瓣型株系再生体系的建立. 植物学报 59, 245-256. |
[26] | 吴志苹, 高亦珂, 范敏, 高耀辉 (2020). 菊花‘金不凋’再生及遗传转化体系的构建. 分子植物育种 18, 150-158. |
[27] | 徐式近, 徐忠传 (2013). 不同菊花品种高效直接再生体系的构建. 江苏农业科学 41(11), 52-54, 100. |
[28] | 许志茹, 陈智华, 姜艳东, 侯杰, 佟玲, 李玉花 (2013). 露地菊离体再生体系建立及BrDFR基因遗传转化. 园艺学报 40, 1517-1526. |
[29] | 阳淑金, 宋爱萍, 何深颖, 朱晓晨, 孙静, 高姣姣, 王银杰, 陈发棣, 蒋甲福 (2015). CaMV 35S启动子在菊花中驱动GUS外源基因的表达分析. 南京农业大学学报 38, 554-559. |
[30] | 余晓敏, 王亚琴, 刘雨菡, 易庆平, 程文翰, 朱钰, 段枫, 张莉雪, 何燕红 (2023). 根癌农杆菌介导万寿菊遗传转化体系的建立. 植物学报 58, 760-769. |
[31] | 赵静雅, 徐素娟, 陈发棣, 滕年军 (2019). 匍匐型地被菊再生及遗传转化体系的建立. 核农学报 33, 1686-1697. |
[32] | 赵伶俐, 石少川, 张启翔, 高亦珂 (2011). 农杆菌介导的地被菊遗传转化体系的优化. 分子植物育种 9, 74-80. |
[33] | Adedeji OS, Naing AH, Kim CK (2020). Protoplast isolation and shoot regeneration from protoplast-derived calli of Chrysanthemum cv. White ND. Plant Cell Tissue organ Cult 141, 571-581. |
[34] | Bernula D, Benk? P, Kaszler N, Domonkos I, Valkai I, Sz?ll?si R, Ferenc G, Ayaydin F, Fehér A, Gémes K (2020). Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots. Plant Cell Tissue Organ Cult 140, 327-339. |
[35] | Brugliera F, Tao GQ, Tems U, Kalc G, Mouradova E, Price K, Stevenson K, Nakamura N, Stacey I, Katsumoto Y, Tanaka Y, Mason JG (2013). Violet/blue chrysanthemums—metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol 54, 1696-1710. |
[36] | Han XY, Luo YT, Lin JY, Wu HY, Sun H, Zhou LJ, Chen SM, Guan ZY, Fang WM, Zhang F, Chen FD, Jiang JF (2021). Generation of purple-violet chrysanthemums via anthocyanin B-ring hydroxylation and glucosylation introduced from Osteospermum hybrid F3'5'H and Clitoria ternatea A3'5'GT. Ornamental Plant Res 1, 4. |
[37] | Huang H, Hu K, Han KT, Xiang QY, Dai SL (2013). Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene. PLoS One 8, e74395. |
[38] | Li YF, Wang JY, Lu CF, Wang ZM, Deng CY, Gao K, Li JJ, Fang ZJ, Liu H, Hong Y, Dai SL (2024). Flavonoid extracts from chrysanthemum with appropriate anthocyanins turn blue when exposed to iron ions. Hortic Plant J 10, 837-852. |
[39] | Lim KB, Kwon SJ, Lee SI, Hwang YJ, Naing AH (2012). Influence of genotype, explant source, and gelling agent on in vitro shoot regeneration of chrysanthemum. Hortic Environ Biotechnol 53, 329-335. |
[40] | Long Y, Yang Y, Pan GT, Shen YO (2022). New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13, 926752. |
[41] | Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M (2009). A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant J 59, 437-447. |
[42] | Naing AH, Park KI, Chung MY, Lim KB, Kim CK (2016). Optimization of factors affecting efficient shoot regeneration in chrysanthemum cv. Shinma. Braz J Bot 39, 975-984. |
[43] | Noda N, Aida R, Kishimoto S, Ishiguro K, Fukuchi-Mizutani M, Tanaka Y, Ohmiya A (2013). Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant Cell Physiol 54, 1684-1695. |
[44] | Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R (2017). Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci Adv 3, e1602785. |
[45] | Renou JP, Brochard P, Jalouzot R (1993). Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci 89, 185-197. |
[46] | Shiono M, Matsugaki N, Takeda K (2005). Structure of the blue cornflower pigment. Nature 436, 791. |
[47] | Shoji K, Miki N, Nakajima N, Momonoi K, Kato C, Yoshida K (2007). Perianth bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions. Plant Cell Physiol 48, 243-251. |
[48] | Shoji K, Momonoi K, Tsuji T (2010). Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. ‘Murasakizuisho’. Plant Cell Physiol 51, 215-224. |
[49] | Song JY, Mattson NS, Jeong BR (2011). Efficiency of shoot regeneration from leaf, stem, petiole and petal explants of six cultivars of Chrysanthemum morifolium. Plant Cell Tissue Organ Cult 107, 295-304. |
[50] | Takeda K, Osakabe A, Saito S, Furuyama D, Tomita A, Kojima Y, Yamadera M, Sakuta M (2005). Components of protocyanin, a blue pigment from the blue flowers of Centaurea cyanus. Phytochemistry 66, 1607-1613. |
[51] | Takeda K, Yamaguchi S, Iwata K, Tsujino Y, Fujimori T, Husain SZ (1996). A malonylated anthocyanin and flavonols in the blue flowers of Meconopsis. Phytochemistry 42, 863-865. |
[52] | Tanaka M, Fujimori T, Uchida I, Yamaguchi S, Takeda K (2001). A malonylated anthocyanin and flavonols in blue Meconopsis flowers. Phytochemistry 56, 373-376. |
[53] | Yoshida K, Negishi T (2013). The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals. Phytochemistry 94, 60-67. |
/
〈 |
|
〉 |