Population Genetic Structure and Climate Adaptation Analysis of an Endemic Bamboo, Brachystachyum densiflorum

  • ZHANG Ru-Li ,
  • LI De-Zhu ,
  • ZHANG Yu-Xiao
Expand
  • 1Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Received date: 2024-06-19

  Revised date: 2024-11-14

  Online published: 2024-11-26

Abstract

Brachystachyum densiflorum is a species endemic to Southeast China. However, due to climate change, rapid economic development, and urbanization in the past decades, its habitat has been continuously destroyed, and fragmentation has increased, leading to a population decline. In this study, Restriction-site associated DNA sequencing (RAD-seq) was performed on six sampled populations, which included 36 individuals, and resulted in the generation of 16 583 SNPs. Subsequently, the genetic structure of B. densiflorum populations were estimated, and landscape genetics and species distribution model were integrated to investigate the mechanisms of climate-change adaptation in B. densiflorum. The results indicated that B. densiflorum showed a moderate level of genetic diversity (PIC=0.722 5, Ho=0.087, He=0.284 3, π=0.317 5). Additionally, the sampled populations were clustered in two groups, and there was moderate differentiation (FST=0.102) and high gene flow (Nm=2.442) between them. Genotype-environment association analyses suggested that the two clusters diverged due to local adaptation to climate. Temperature difference and low temperaturecooperated with precipitation to drive genetic variation, and a total of 544 adaptive loci were identified with significant correlations to temperature difference and low temperature (Bio2, Bio6, Bio11, and Bio7) and precipitation (Bio19). The species distribution model indicated that B. densiflorum had migrated significantly northward, with an 89.5% increase in distribution area from the last glacial maximum to current. In the future, the volatility of the suitable area is minor in the two periods of 2021–2040 and 2041–2060. However, the distributional range of highly suitable area is contracted in the period 2061–2080 and the highly suitable area is partially fragmented and declined in Anhui Province. In summary, this study provides valuable insights for the conservation and utilisation of B. densiflorum.

Cite this article

ZHANG Ru-Li , LI De-Zhu , ZHANG Yu-Xiao . Population Genetic Structure and Climate Adaptation Analysis of an Endemic Bamboo, Brachystachyum densiflorum[J]. Chinese Bulletin of Botany, 0 : 1 -0 . DOI: 10.11983/CBB24094

References

[1] 蔡超男, 侯勤曦, 慈秀芹, 肖建华, 张灿瑜, 李捷 (2021). 极小种群野生植物海南风吹楠的遗传多样性研究. 热带亚热带植物学报 29, 547-555.
[2] 陈禹锦, 罗喻才, 于芬, 杨光耀, 张文根 (2021). 气候变化情景下毛竹潜在分布及动态预测. 世界竹藤通讯. 3, 5-14.
[3] 董芳淑, 廉丽姝, 孙博雯, 程禛, 朱艳冰 (2023). 华东地区能见度时空变化特征及影响因子分析. 气象科技51, 510-519.
[4] 管睿婷, 刘济明, 王敏, 陈敬忠, 武梦瑶, 童炳丽 (2019). 不同天然居群小蓬竹的遗传多样性. 植物研究 39, 740-751.
[5] 胡菀, 张志勇, 陈陆丹, 彭焱松, 汪旭 (2020). 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报44, 44-55.
[6] 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿 (2022). 基于保护基因组学揭示荷叶铁线蕨的濒危机制. 生物多样性 30, 205-215.
[7] 余鸽 (2016). 巴山木竹克隆结构及遗传多样性研究. 博士论文. 陕西:西北农林科技大学. pp. 1-133.
[8] 邱月群, 董文渊, 王逸之, 付建生 (2017). 筇竹天然居群遗传多样性研究. 西北林学院学报 32, 155-160.
[9] 张如礼, 刘蔚漪, 张玉霄, 涂丹丹, 朱礼月, 张文君, 辉朝茂 (2021). 基于简化基因组测序的澜沧梨藤竹遗传多样性分析. 分子植物育种 1-21. (网络首发)
[10] 张珊珊, 康洪梅, 杨文忠 (2019). 基于简化基因组技术的云南蓝果树群体遗传分析. 植物研究 39, 899-907.
[11] 赵虎刚, 张如礼, 熊云, 马长乐, 张玉霄 (2023). 极小种群野生植物独龙江空竹遗传多样性研究. 中国野生植物资源 42, 112-120.
[12] Aguirre-Liguori JA, Ramírez-Barahona S, Gaut BS (2021). The evolutionary genomics of species' responses to climate change. Nat Ecol Evol 5, 1350-1360.
[13] Alvarado AH, Bossu CM, Harrigan RJ, Bay RA, Nelson ARP, Smith TB, Ruegg KC (2022). Genotype-environment associations across spatial scales reveal the importance of putative adaptive genetic variation in divergence. Evol Appl 15, 1390-1407.
[14] Attigala L, Gallaher T, Nason J, Clark LG (2017). Genetic diversity and population structure of the threatened temperate woody bamboo Kuruna debilis (Poaceae: Bambusoideae: Arundinarieae) from Sri Lanka based on microsatellite analysis. J Natn Sci Foundation Sri Lanka 45, 53-65.
[15] Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, e3376.
[16] Barr K, Beichman AC, Kalhori P, Rajbhandary J, Bay RA, Ruegg K, Smith TB (2020). Persistent panmixia despite extreme habitat loss and population decline in the threatened tricolored blackbird (Agelaius tricolor). Evol Appl 14, 674-684.
[17] Bhandawat A, Sharma V, Singh P, Seth R, Nag A, Kaur J, Sharma RK (2019). Discovery and Utilization of EST?SSR Marker Resource for Genetic Diversity and Population Structure Analyses of a Subtropical Bamboo, Dendrocalamus hamiltonii. Biochem Genet 57, 652-672.
[18] Boban S, Maurya S , Jha Z (2022). DNA fingerprinting: an overview on genetic diversity studies in the botanical taxa of Indian Bamboo. Genet Resour Crop Evol 69, 1-30.
[19] Bolte CE, Faske TM, Friedline CJ, Eckert AJ (2022). Divergence amid recurring gene flow: complex demographic histories for two North American pines (Pinus pungens and P. rigida) fit growing expectations among forest trees. Tree Genet Genome 18, 18-35.
[20] Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007). Population Adaptive Index: a New Method to Help Measure Intraspecific Genetic Diversity and Prioritize Populations for Conservation. Conserv Biol 21, 697-708.
[21] Butler JB, Harrison PA, Vaillancourt RE, Steane DA, Tibbits JFG, Potts BM (2022). Climate adaptation, drought susceptibility, and genomic-informed predictions of future climate refugia for the Australian forest tree Eucalyptus globulus. Forests 13, 575-600.
[22] Buziquia ST, Lopes PVF, Almeida AK, de Almeida IK (2019). Impacts of bamboo spreading: a review. Biodivers Conserv 28, 3695-3711.
[23] Cheng J, Kao HX, Dong SB (2020). Population genetic structure and gene flow of rare and endangered Tetraena mongolica Maxim. revealed by reduced representation sequencing. BMC Plant Biol 20, 391-404.
[24] Clark LG (2023). Integrating genomic and morphological data into bamboo taxonomic and evolutionary studies. Plant Divers 45, 123-124.
[25] Das S, Singh YP, Negi YK, Shrivastav PC (2017). Genetic variability in different growth forms of Dendrocalamus strictus: Deogun revisited. N Z J For Sci 47, 23-35.
[26] Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12, 499-510.
[27] DeSaix MG, George TL, Seglund AE, Spellman GM, Zavaleta ES, Ruegg KC (2022). Forecasting climate change response in an alpine specialist songbird reveals the importance of considering novel climate. Divers Distrib 28, 2239-2254.
[28] Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull 19, 11-15.
[29] Ely F, Rada F, Fermin G & Clark L (2019). Ecophysiology and genetic diversity in species of the bamboo Chusquea in the high Andes,Venezuela. Plant Ecol Divers 12, 555-572.
[30] Feng L and Du FK (2022). Landscape Genomics in Tree Conservation Under a Changing Environment. Front Plant Sci 13, 822217.
[31] Fick SE, Hijmans RJ (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37, 4302-4315.
[32] Filipe JC, Rymer PD, Byrne M, Hardy G, Mazanec R, Ahrens CW (2022). Signatures of natural selection in a foundation tree along Mediterranean climatic gradients. Mol Ecol 31, 1735-1752.
[33] Florez JEM, Londo?o X, Rúgeles P, Posso A, Vallejo FA (2010). Diversidad y estructura genética de Guadua angustifolia en la Ecorregión Cafetera colombiana. Recurs Nat y Ambie 61, 45-52.
[34] Gibson MJS, Moyle LC (2020). Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species. Mol Ecol 29, 2204-2217.
[35] Guo ZH, Ma PF, Yang GQ , Hu JY, Liu YL, Xia EH, Zhong MC, Zhao L, Sun GL, Xu YX, Zhao YJ, Zhang YC, Zhang YX, Zhang XM, Zhou MY, Guo Y, Guo C, Liu JX, Ye XY, Chen YM, Yang Y, Han B, Lin CS, Lu Y, Li DZ (2019). Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol Plant 12, 1353-1365.
[36] Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Hallé C, Troispoux V, Veron V, Degen B (2006). Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Mol Ecol 15, 559-571.
[37] Harrisson KA, Amish SJ, Pavlova A, Narum SR, Telonis-Scott M, Rourke ML, Lyon J, Tonkin Z, Gilligan DM, Ingram BA, Lintermans M, Gan HM , Austin CM, Luikart G, Sunnucks P (2017). Signatures of polygenic adaptation associated with climate across the range of a threatened fish species with high genetic connectivity. Mol Ecol 26, 6253-6269.
[38] Haupt M, Schmid K (2022). Using landscape genomics to infer genomic regions involved in environmental adaptation of soybean genebank accessions. bioRxiv https://doi.org/10.1101/2022.02.18.480989.
[39] He TY, Qu YQ, Chen LY, Xu W, Rong JD, Chen LG, Fan LL, Tarin MWK, Zheng YS (2019). Genetic diversity analysis of Dendrocalamopsis beecheyana var. pubescens based on ISSR markers. App Ecol Environ Res 17, 12507-12519.
[40] He HL, Zheng XF, Wang YQ, Wang WQ, Li MB, Wang SG, Wang J, Wang CM, and Zhan H (2022). Effects of Climate Change and Environmental Factors on Bamboo (Ferrocalamus strictus), a PSESP Unique to China. Forests 13, 2108.
[41] Huang L, Xing XC, Li WW, Zhou Y, Zhang YQ, Xue C, Ren Y, Kang JQ (2020). Altitude difference might contribute to the genetic divergence of giant panda’ staple food Bamboo (Fargesia spathacea complex) based on 14 SSR markers. J Syst Evol 59, 1051-1064.
[42] I?IK K (2011). Rare and endemic species: why are they prone to extinction? Turkish J Botany 35, 411-417.
[43] Jia KH, Zhao W, Maier P, Hu XG, Jin YQ, Zhou SS, Jiao SQ, El-Kassaby YA, Wang TL, Wang XR, Mao JF (2019). Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae). Evol Appl 13, 665-676.
[44] Jiang WX, Bai TD, Dai HM, Wei Q, Zhang WJ, Ding YL (2017). Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)-a primarily asexual reproduction species in China. Tree Genet Genome 13, 130-144.
[45] Jing HY, Xiong XS, Jiang F, Pu XC, Ma WH, Li DJ, Liu ZL, Wang ZH (2024). Climate change filtered out resource-acquisitive plants in a temperate grassland in Inner Mongolia, China. Sci. China Life Sci. 67, 403-413.
[46] Keenan RJ (2015). Climate change impacts and adaptation in forest management: a review. Ann For Sci 72, 145-167.
[47] Li DZ, Wang ZP, Zhu ZD, Xia NH, Jia LZ, Guo ZH, Yang GY, Stapleton CMA (2006). Bambuseae (Poaceae). In: Wu Z Y, Raven P H, Hong D Y (eds.), Flora of China, vol. 22. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press. pp. 7-180.
[48] Li ST, Ramakrishnan M, Vinod KK, Kalendar R, Yrj?l? K and Zhou MB (2020). Development and Deployment of High-Throughput Retrotransposon-Based Markers Reveal Genetic Diversity and Population Structure of Asian Bamboo. Forests 11, 31-56.
[49] Li W, He SQ (2019). Research on the Utilization and Development of Bamboo Resources through Problem Analysis and Assessment. IOP Conf Ser Earth Environ Sci 300, 052028.
[50] Lin N, Landis JB, Sun YX, Huang XH, Zhang X, Liu Q, Zhang HJ, Sun H, Wang HC, Deng T (2021). Demographic history and local adaptation of Myripnois dioica (Asteraceae) provide insight on plant evolution in northern China flora. Ecol Evol 11, 8000-8013.
[51] Lin XC, Lou YF, Zhang YZ, Yuan XL, He JC, Fang W (2011). Identification of Genetic Diversity Among Cultivars of Phyllostachys violascens Using ISSR, SRAP and AFLP Markers. Bot. Rev 77, 223-232.
[52] Meena RK, Bhandhari MS, Barhwal S, Ginwal HS (2019). Genetic diversity and structure of Dendrocalamus hamiltonii natural metapopulation: a commercially important bamboo species of northeast Himalayas. 3 Biotech 9, 60-73.
[53] Meena RK, Negi N, Shankhwar R, Bhandari MS, Kant R, Pandey S, Kumar N, Sharma R, Ginwal HS (2023a). Ecological niche modelling and population genetic analysis of Indian temperate bamboo Drepanostachyum falcatum in the western Himalayas. J Plant Res 136, 483-499.
[54] Meena RK, Negi N, Shankhwar R, Bhandari MS, Sharma R (2023b). Population genetic analysis illustrated a high gene diversity and genetic heterogeneity in Himalayacalamus falconeri: a socio-economically important Indian temperate woody bamboo taxon. J Plant Biochem Biotechnol 32, 438-450.
[55] Morin PA, Luikart G, Wayne RK (2004). SNPs in ecology, evolution and conservation. Trends Ecol Evol 19, 208-216.
[56] Nilkanta H, Amom T, Tikendra L, Rahaman H, Nongdam P (2017). ISSR Marker Based Population Genetic Study of Melocanna baccifera (Roxb.) Kurz: A Commercially Important Bamboo of Manipur, North-East India. Scientifica 2017, 1-9.
[57] Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010). Conservation genetics in transition to conservation genomics. Trends Genet 26, 177-187.
[58] Oumer OA, Dagne K, Feyissa T, Tesfaye K, Durai J, Hyder MZ (2020). Genetic diversity, population structure, and gene flow analysis of lowland bamboo [Oxytenanthera abyssinica (A. Rich.) Munro] in Ethiopia. Ecol Evol 10, 11217-11236.
[59] Perez-Alquicira J, Aguilera-Lopez S, Rico Y, Ruiz-Sanchez E (2021). A population genetics study of three native Mexican woody bamboo species of Guadua (Poaceae: Bambusoideae: Bambuseae: Guaduinae) using nuclear microsatellite markers. Botanical Sci 99, 542-559.
[60] Phair NL, Nielsen ES , Von der HS (2021). Applying genomic data to seagrass conservation. Biodivers Conserv 30, 2079-2096.
[61] Polic D, Y?ld?r?m Y, Lee KM, Franzén M, Mutanen M, Vila R, Forsman A (2022). Linking large-scale genetic structure of three Argynnini butterfly species to geography and environment. Mol Ecol 31, 4381-4401.
[62] Poupon V, Chakraborty D, Stejskal J, Konrad H, Schueler S, Lstib?rek M (2021). Accelerating Adaptation of Forest Trees to Climate Change Using Individual Tree Response Functions. Front Plant Sci 12, 758221.
[63] Salvado P, Aymerich BP, Parera J, Vila BA, Martin M, Quélennec C, Lewin JM, Delorme-Hinoux V, Bertrand JAM (2022). Little hope for the polyploid endemic Pyrenean Larkspur (Delphinium montanum): Evidences from population genomics and Ecological Niche Modeling. Ecol Evol 12, e8711.
[64] Sang YP, Long ZQ, Dan XM, Feng JJ, Shi TT, Jia CF, Zhang XX, Lai Q, Yang GL, Zhang HY, Xu XT, Liu HH, Jiang YZ, Ingvarsson PK, Liu JQ, Mao KS, Wang J (2022). Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia. Nat Commun 13, 6541.
[65] Sepúlveda-Espinoza F, Bertin-Benavides A, Hasbún R, Toro-Nú?ez ó, Varas-Myrik A, Alarcón D, Guillemin ML (2022). The impact of Pleistocene glaciations and environmental gradients on the genetic structure of Embothrium coccineum. Ecol Evol 12, e9474.
[66] Shafer AB, Wolf JB, Alves PC, Bergstr?m L, Bruford MW, Br?nnstr?m I, Colling G, Dalén L, De Meester L, Ekblom R, Fawcett KD, Fior S, Hajibabaei M, Hill JA, Hoezel AR, H?glund J, Jensen EL, Krause J, Kristensen TN, Krützen M, McKay JK, Norman AJ, Ogden R, ?sterling EM, Ouborg NJ, Piccolo J, Popovi? D, Primmer CR, Reed FA, Roumet M, Salmona J, Schenekar T, Schwartz MK, Segelbacher G, Senn H, Thaulow J, Valtonen M, Veale A, Vergeer P, Vijay N, Vilà C, Weissensteiner M, Wennerstr?m L, Wheat CW, Zieliński P (2014). Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30, 78-87.
[67] Silva SMM, Martins K, Costa FHS, Campos T, Scherwinski-Pereira JE (2020). Genetic structure and diversity of native Guadua species (Poaceae: Bambusoideae) in natural populations of the Brazilian Amazon rainforest. An Acad Bras Cienc 92, e20190083.
[68] Soreng RJ, Peterson PM, Zuloaga FO, Romaschenko K, Clark LG, Teisher JK, Gillespie LJ, Barberá P, Welker CAD, Kellogg EA, Li DZ, and Davidse G (2022). A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update. J Syst Evol 60, 476-521.
[69] Tian B, Yang HQ, Wong KM, Liu AZ, Ruan ZY (2012). ISSR analysis shows low genetic diversity versus high genetic differentiation for giant bamboo, Dendrocalamus giganteus (Poaceae: Bambusoideae), in China populations. Genet Resour Crop Evol 59, 901-908
[70] Vranken S, Wernberg T, Scheben A, Severn-Ellis AA, Batley J, Bayer PE, Edwards D, Wheeler D, Coleman MA (2021). Genotype-Environment mismatch of kelp forests under climate change. Mol Ecol 30, 3730-3746.
[71] Wang GP, Lai H, Bi S, Guo DL, Zhao XP, Chen XL, Liu S, Liu XG, Su YQ, Yi HD, Li GF (2022a). ddRAD-Seq reveals evolutionary insights into population differentiation and the cryptic phylogeography of Hyporhamphus intermedius in Mainland China. Ecol Evol 12, e9053.
[72] Wang J, Feng C, Jiao TL, Von Wettberg EB, Kang M (2017). Genomic Signature of Adaptive Divergence despite Strong Nonadaptive Forces on Edaphic Islands: A Case Study of Primulina juliae. Genome Biol Evol 9, 3495-3508.
[73] Wang L, Liu SF, Yang Y, Meng ZN, Zhuang ZM (2022b). Linked selection, differential introgression and recombination rate variation promote heterogeneous divergence in a pair of yellow croakers. Mol Ecol 31, 5729-5744.
[74] Wang TR, Meng HH, Wang N, Zheng SS, Jiang Y, Lin DQ, Song YG, Kozlowski G (2023). Adaptive divergence and genetic vulnerability of relict species under climate change: a case study of Pterocarya macroptera. Ann Bot 132, 241-254.
[75] Wernberg T, Coleman MA, Bennett S, Thomsen MS, Tuya F & Kelaher BP (2018). Genetic diversity and kelp forest vulnerability to climatic stress. Sci Rep 8, 1-8.
[76] Wu RF, Qi JW, Li WB, Wang L, Shen Y, Liu JW, Teng Y, Roos C, Li M (2023). Landscape genomics analysis provides insights into future climate change-driven risk in Rhesus macaque. Sci Total Environ 899, 165746.
[77] Xun HZ, Li H, Li SJ, Wei SJ, Zhang LJ, Song F, Jiang P, Yang HL, Han F, Cai WZ (2016). Population genetic structure and post-LGM expansion of the plant bug Nesidiocoris tenuis (Hemiptera: Miridae) in China. Sci Rep 6, 26755-26766.
[78] Yang FM, Cai L, Dao ZL, Sun WB (2022a). Genomic Data Reveals Population Genetic and Demographic History of Magnolia fistulosa (Magnoliaceae), a Plant Species With Extremely Small Populations in Yunnan Province, China. Front Plant Sci 13, 811312.
[79] Yang FY, Crossley MS, Schrader L, Dubovskiy IM, Wei SJ, Zhang RZ (2022b). Polygenic adaptation contributes to the invasive success of the Colorado potato beetle. Mol Ecol 31, 5568-5580.
[80] Yang H, Li JL, Milne RI, Tao WJ, Wang Y, Miao JB, Wang WT, Ju T, Tso S, Luo J, Mao KS (2022c). Genomic insights into the genotype-environment mismatch and conservation units of a Qinghai-Tibet Plateau endemic cypress under climate change. Evol Appl 15, 919-933.
[81] Yang HQ, An MY, Gu ZJ, Tian B (2012). Genetic Diversity and Differentiation of Dendrocalamus membranaceus (Poaceae: Bambusoideae), a Declining Bamboo Species in Yunnan, China, as Based on Inter-Simple Sequence Repeat (ISSR) Analysis. Int J Mol Sci 13, 4446-4457.
[82] Yang JB, Dong YR, Wong KM, Gu ZJ, Yang HQ, Li DZ (2018). Genetic structure and differentiation in Dendrocalamus sinicus (Poaceae: Bambusoideae) populations provide insight into evolutionary history and speciation of woody bamboos. Sci Rep 8, 16933.
[83] Yuan S, Shi Y, Zhou BF, Liang YY, Chen XY, An QQ, Fan YR, Zhao S, Ingvarsson PK, Wang BS (2023). Genomic vulnerability to climate change in Quercus acutissima, a dominant tree species in East Asian deciduous forests. Mol Ecol 32, 1639-1655.
[84] Zhang X, Sun YX, Landis JB, Zhang JW, Yang LS, Lin N, Zhang HJ, Guo R, Li LJ, Zhang YH, Deng T, Sun H, Wang HC (2020). Genomic insights into adaptation to heterogeneous environments for the ancient relictual Circaeaster agrestis (Circaeasteraceae, Ranunculales). New Phytol 228, 285-301.
[85] Zhang YX , Zeng CX , Li DZ (2012). Complex evolution in Arundinarieae (Poaceae: Bambusoideae): incongruence between plastid and nuclear GBSSI gene phylogenies. Mol Phylogenet Evol 63, 777-797.
[86] Zhao HS, Gao ZM, Wang L, Wang JL, Wang SB, Fei BH, Chen CH, Shi CC, Liu XC, Zhang HL, Lou YF, Chen LF, Sun HY, Zhou XQ, Wang SN, Zhang C, Xu H, Li LC, Yang YH, Wei YL, Yang W, Gao Q, Yang HM, Zhao SC, Jiang ZH (2018). Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience 7, giy115.
[87] Zhou BZ, Fu MY, Xie JZ, Yang XS, Li ZC (2005). Ecological functions of bamboo forest: Research and Application. J For Res 16, 143-147.
[88] Zhu S, Liu TM, Tang Q, Fu L, Tang S (2014). Evaluation of bamboo genetic diversity using morphological and SRAP analyses. Genetika 50, 306-313.
Outlines

/