[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]番茄SlWRKY45转录因子在响应低温和干旱胁迫中的功能(长英文摘要)
收稿日期: 2024-07-08
录用日期: 2024-10-14
网络出版日期: 2024-10-16
基金资助
延安大学博士科研启动项目(YDBK2019-42);陕西省自然科学基础研究计划(2022JQ-159);陕西省大学生创新创业训练计划(S202310719073)
Functions of SlWRKY45 in Response to Low-temperature and Drought Stress in Tomato
Received date: 2024-07-08
Accepted date: 2024-10-14
Online published: 2024-10-16
番茄(Solanum lycopersicum)在生长发育过程中常受到低温和干旱等多种非生物胁迫的影响。WRKY转录因子参与调控植物多种非生物胁迫响应过程, 而SlWRKY45在番茄非生物胁迫中的功能尚不清楚。基因表达分析发现, 低温、干旱和ABA处理均可显著诱导SlWRKY45的表达; 过表达SlWRKY45可提高番茄对干旱和低温的耐受性; 在干旱和低温处理下, 过表达株系的光合指标、抗氧化酶活性和脯氨酸(Pro)含量显著高于野生型(WT), 活性氧(ROS)和丙二醛(MDA)含量显著低于WT。转录组数据分析显示, SlWRKY45主要通过调控抗氧化酶活性和胁迫响应途径介导番茄对低温胁迫的响应。双荧光素酶报告基因检测发现, SlWRKY45可直接激活SlPOD1的表达。酵母双杂交(Y2H)和双分子荧光互补(BiFC)试验结果表明, SlWRKY45与SlWRKY46存在相互作用。综上表明, SlWRKY45可能通过直接调控抗氧化酶途径增强转基因番茄的抗逆性, 为番茄的遗传改良提供了重要的候选基因资源。
樊蓓 , 任敏 , 王延峰 , 党峰峰 , 陈国梁 , 程国亭 , 杨金雨 , 孙会茹 . 番茄SlWRKY45转录因子在响应低温和干旱胁迫中的功能(长英文摘要)[J]. 植物学报, 2025 , 60(2) : 186 -203 . DOI: 10.11983/CBB24101
INTRODUCTION Tomato (Solanum lycopersicum), a significant warm-season and water-dependent vegetable crop, is extensively cultivated worldwide. Whether grown in open fields or protected environments, tomatoes frequently encounter various environmental stresses, including drought and low temperatures, which significantly impact their yield and quality. Transcription factors play a pivotal role in plant stress responses by modulating the expression of specific target genes, thereby transmitting perceived stress signals downstream. WRKY transcription factors in tomatoes are known to regulate responses to multiple abiotic stresses. However, the specific role of the tomato SlWRKY45 in abiotic stress responses remains unclear.
RATIONALEStudies have demonstrated that WRKY transcription factors play a crucial regulatory role in plant responses to abiotic stress. As an important economic vegetable crop, tomato is susceptible to various environmental stresses during its growth and development. By genetically overexpressing SlWRKY45 in tomato and investigating its function under low-temperature and drought stress conditions, the findings can provide a theoretical foundation for understanding the complex regulatory mechanisms of WRKY transcription factors. Additionally, this research offers valuable candidate genes for breeding stress-resistant tomato varieties.
RESULTSExpression analysis revealed that low-temperature, drought, and abscisic acid (ABA) treatments significantly induced the expression of SlWRKY45. Overexpression of SlWRKY45 enhanced the resistance of tomato plants to drought and low-temperature stresses. Under drought and low-temperature conditions, the photosynthetic indices, antioxidant enzyme activities, and proline (Pro) contents in SlWRKY45 overexpression lines were significantly higher than those in wild-type (WT) plants. Conversely, the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) levels in SlWRKY45-OE plants was significantly lower than in WT plants under the same stress conditions. Transcriptome data analysis indicated that SlWRKY45 regulates tomato's response to low-temperature stress primarily by influencing antioxidant enzyme activities and stress response pathways. Dual-luciferase assays demonstrated that SlWRKY45 could directly activate the expression of SlPOD1. Furthermore, the interaction between SlWRKY45 and SlWRKY46 was confirmed through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays.
CONCLUSIONOur findings demonstrate that SlWRKY45 positively regulates drought resistance and low-temperature tolerance in tomato. Additionally, SlWRKY45 can interact with SlWRKY46 and directly activate the expression of SlPOD1. These results offer valuable insights for further research into the regulatory mechanisms underlying abiotic stress responses and provide potential gene resources for genetic improvement through molecular breeding.
Phenotypes of SlWRKY45-overexpressing and wild-type plants under drought and low-temperature treatments
Key words: tomato; SlWRKY45; drought stress; low-temperature stress; antioxidase
[1] | Ahammed GJ, Li X, Yang YX, Liu CC, Zhou GZ, Wan HJ, Cheng Y (2020). Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2-mediated stomatal closure. Environ Exp Bot 171, 103960. |
[2] | Baillo EH, Kimotho RN, Zhang ZB, Xu P (2019). Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10, 771. |
[3] | Chen H, Lai ZB, Shi JW, Xiao Y, Chen ZX, Xu XP (2010). Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10, 281. |
[4] | Chen N, Shao Q, Li XP (2023). Research progress on WRKY transcription factors and their biological function in tomato (Solanum lycopersicum L.). Jiangsu Agric Sci 51 (13), 6-17. (in Chinese) |
陈娜, 邵勤, 李晓鹏 (2023). 番茄WRKY转录因子功能的研究进展. 江苏农业科学 51(13), 6-17. | |
[5] | Chen QQ, Zhang H, Jiang JB, Li JF (2018). Partial WRKY genes expression under non-biological stress and analysis of SlWRKY50 gene silencing in tomato. J Northeast Agric Univ 49(7), 8-18. (in Chinese) |
陈青奇, 张红, 姜景彬, 李景富 (2018). 番茄部分WRKY基因非生物胁迫表达和SlWRKY50基因沉默分析. 东北农业大学学报 49(7), 8-18. | |
[6] | Dang FF, Lin JH, Li YJ, Jiang RY, Fang YD, Ding F, He SL, Wang YF (2023). SlWRKY30 and SlWRKY81 synergistically modulate tomato immunity to Ralstonia solanacearum by directly regulating SlPR-STH2. Hortic Res 10, uhad050. |
[7] | Dong QL, Tian Y, Zhang XM, Duan DY, Zhang H, Yang KY, Jia P, Luan HA, Guo SP, Qi GH, Mao K, Ma FW (2024). Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple. Hortic Plant J 10, 629-640. |
[8] | Dong QL, Zheng WQ, Duan DY, Huang D, Wang Q, Liu CH, Li C, Gong XQ, Li CY, Mao K, Ma FW (2020). MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings. Plant Sci 299, 110611. |
[9] | Dong SC, Hong J, Ling JY, Xie ZX, Zhang SJ, Zhao LP, Song LX, Wang YL, Zhao TM (2024). Genome-wide association studies of drought tolerance in tomato. Acta Hortic Sin 51, 229-238. (in Chinese) |
董舒超, 洪骏, 凌嘉怡, 谢紫欣, 张胜军, 赵丽萍, 宋刘霞, 王银磊, 赵统敏 (2024). 番茄抗旱性的全基因组关联分析. 园艺学报 51, 229-238. | |
[10] | Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Qu YB, Yao YA (2020). The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant 168, 98-117. |
[11] | Ge MM, Tang Y, Guan YJ, Lv MC, Zhou C, Ma HL, Lv JY (2024). TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance. BMC Plant Biol 24, 27. |
[12] | Guo J, Liao MY, Jin Y, Ma XC, Zhang F, Lu XP, Deng ZN, Sheng L (2023). Functional analysis of transcription factor CsbHLH3 in regulating citric acid metabolism of citrus fruit. Acta Hortic Sin 50, 947-958. (in Chinese) |
郭静, 廖满余, 金燕, 马小川, 张芬, 卢晓鹏, 邓子牛, 盛玲 (2023). 柑橘转录因子CsbHLH3调控柠檬酸代谢的功能解析. 园艺学报 50, 947-958. | |
[13] | Guo MY, Yang FJ, Liu CX, Zou JP, Qi ZY, Fotopoulos V, Lu G, Yu JQ, Zhou J (2022). A single-nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato. New Phytol 236, 989-1005. |
[14] | Hou YY, Liu Y, Zhao LY, Zhao YQ, Wu ZG, Zheng YH, Jin P (2023). EjCML19 and EjWRKY7 synergistically function in calcium chloride-alleviated chilling injury of loquat fruit. Postharvest Biol Technol 203, 112417. |
[15] | Huang H, Zhao WC, Li CH, Qiao H, Song SS, Yang R, Sun LL, Ma JL, Ma XC, Wang SH (2022a). SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. Plant Physiol 190, 828-842. |
[16] | Huang H, Zhao WC, Qiao H, Li CH, Sun LL, Yang R, Ma XC, Ma JL, Song SS, Wang SH (2022b). SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode Meloidogyne incognita in tomato. Hortic Res 9, uhac197. |
[17] | Huo T, Wang CT, Yu TF, Wang DM, Li M, Zhao D, Li XT, Fu JD, Xu ZS, Song XY (2021). Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis. Sci Rep 11, 4024. |
[18] | Ishiguro S, Nakamura K (1994). Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet 244, 563-571. |
[19] | Jia CP, Wang J, Guo B, Li X, Yang T, Yang HT, Li N, Wang BK, Yu QH (2023). A group III WRKY transcription factor, SlWRKY52, positively regulates drought tolerance in tomato. Environ Exp Bot 215, 105513. |
[20] | Li PT, Zhao ZL, Huang CH, Huang GQ, Xu LN, Deng ZH, Zhang Y, Zhao XW (2022). Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA. Acta Agron Sin 48, 1583-1600. (in Chinese) |
李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺 (2022). 基于转录组及WGCNA的甘蔗干旱响应调控网络分析. 作物学报 48, 1583-1600. | |
[21] | Li WX, Pang SY, Lu ZG, Jin B (2020). Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 9, 1515. |
[22] | Li YK, Jiang FL, Niu LF, Wang G, Yin J, Song XM, Ottosen CO, Rosenqvist E, Mittler R, Wu Z, Zhou R (2024). Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. Plant J 117, 1656-1675. |
[23] | Liang YF, Ma F, Li BY, Guo C, Hu TX, Zhang MK, Liang Y, Zhu JH, Zhan XQ (2022). A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato. Hortic Res 6, uhac198. |
[24] | Liu W, Liang XQ, Cai WJ, Wang H, Liu X, Cheng LF, Song PH, Luo GJ, Han DG (2022). Isolation and functional analysis of VvWRKY28, a Vitis vinifera WRKY transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana. Int J Mol Sci 23, 13418. |
[25] | Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods 25, 402-408. |
[26] | Ma L, Li X, Zhang JJ, Yi DX, Li F, Wen HY, Liu WH, Wang XM (2023). MsWRKY33 increases alfalfa (Medicago sativa L.) salt stress tolerance through altering the ROS scavenger via activating MsERF5 transcription. Plant Cell Environ 46, 3887-3901. |
[27] | Mi XZ, Tang MS, Zhu JX, Shu MT, Wen HL, Zhu JY, Wei CL (2024). Alternative splicing of CsWRKY21 positively regulates cold response in tea plant. Plant Physiol Biochem 208, 108473. |
[28] | Qiu YP, Yu DQ (2009). Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65, 35-47. |
[29] | Shang CY, Liu XY, Chen G, Zheng H, Khan A, Li GB, Hu XH (2024). SlWRKY80-mediated jasmonic acid pathway positively regulates tomato resistance to saline-alkali stress by enhancing spermidine content and stabilizing Na+/K+ homeostasis. Hortic Res 11, uhae028. |
[30] | Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284, 455-475. |
[31] | Shi WY, Du YT, Ma J, Min DH, Jin LG, Chen J, Chen M, Zhou YB, Ma YZ, Xu ZS, Zhang XH (2018). The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci 19, 4087. |
[32] | Shu P, Zhang SJ, Li YJ, Wang XY, Yao L, Sheng JP, Shen L (2021). Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways. Plant Physiol Biochem 166, 1-9. |
[33] | Sun H, Yue QY, Xiang GQ, Zhai H, Yao YX (2018). Impacts of different concentrations of NaCl on formation of grape berry quality. Plant Physiol J 54, 63-70. (in Chinese) |
孙红, 岳倩宇, 相广庆, 翟衡, 姚玉新 (2018). 不同浓度的NaCl处理对葡萄果实品质形成的影响. 植物生理学报, 54, 63-70. | |
[34] | Sun XC, Gao YF, Li HR, Yang SZ, Liu YS (2014). Cloning, disease resistance and salt tolerance analysis of SlWRKY23 in tomato. J Agric Sci Technol 16(5), 39-46. (in Chinese) |
孙晓春, 高永峰, 李会容, 杨述章, 刘永胜 (2014). 番茄SlWRKY23基因的克隆及其抗病性和耐盐性分析. 中国农业科技导报 16(5), 39-46. | |
[35] | Sun XC, Gao YF, Li HR, Yang SZ, Liu YS (2015). Over- expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato. J Plant Biol 58, 52-60. |
[36] | Tang JQ, Mei EY, He ML, Bu QY, Tian XJ (2022). Functions of OsWRKY24, OsWRKY70 and OsWRKY53 in regulating grain size in rice. Planta 255, 92. |
[37] | Wang C, Deng PY, Chen LL, Wang XT, Ma H, Hu W, Yao NC, Feng Y, Chai RH, Yang GX, He GY (2013). A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8, e65120. |
[38] | Wang C, Hao XL, Wang Y, Maoz I, Zhou W, Zhou ZG, Kai GY (2022). Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. Hortic Res 9, uhac099. |
[39] | Wang F, Chen HW, Li QT, Wei W, Li W, Zhang WK, Ma B, Bi YD, Lai YC, Liu XL, Man WQ, Zhang JS, Chen SY (2015). GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J 83, 224-236. |
[40] | Wang F, Wang Q, Zhao XY (2019). Research progress of phenotype and physiological response mechanism of plants under low temperature stress. Mol Plant Breed 17, 5144-5153. (in Chinese) |
王芳, 王淇, 赵曦阳 (2019). 低温胁迫下植物的表型及生理响应机制研究进展. 分子植物育种 17, 5144-5153. | |
[41] | Wang LH, Chen H, Chen GY, Luo GB, Shen XY, Ouyang B, Bie ZL (2024). Transcription factor SlWRKY50 enhances cold tolerance in tomato by activating the jasmonic acid signaling. Plant Physiol 194, 1075-1090. |
[42] | Wang WJ, Li T, Chen Q, Yao SX, Zeng KF (2023). Transcriptional regulatory mechanism of a variant transcription factor CsWRKY23 in citrus fruit resistance to Penicillium digitatum. Food Chem 413, 135573. |
[43] | Wang YX, Meng QW, Ma NN (2021). Characterization and analysis of some chilling-response WRKY transcription fac- tors in tomato. Plant Physiol J 57, 1349-1362. (in Chinese) |
王艺璇, 孟庆伟, 马娜娜 (2021). 番茄低温响应WRKY转录因子的鉴定和分析. 植物生理学报 57, 1349-1362. | |
[44] | Wei W, Cui MY, Yang H, Gao K, Xie YG, Jiang Y, Feng JY (2018). Ectopic expression of FvWRKY42, a WRKY transcription factor from the diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. Plant Sci 275, 60-74. |
[45] | Wen WW, Wang RY, Su LT, Lv AM, Zhou P, An Y (2021). MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.). Environ Exp Bot 184, 104373. |
[46] | Wu XL, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28, 21-30. |
[47] | Xu PY, Xu L, Xu HF, He XW, He P, Chang YS, Wang S, Zheng WY, Wang CZ, Chen X, Li LG, Wang HB (2023). MdWRKY40 is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple. J Integr Agric 22, 1704-1719. |
[48] | Xu XP, Chen CH, Fan BF, Chen ZX (2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18, 1310-1326. |
[49] | Yang Z, Chi XY, Guo FF, Jin XY, Luo HL, Hawar A, Chen YX, Feng KK, Wang B, Qi JL, Yang YH, Sun B (2020). SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J Plant Physiol 246-247, 153142. |
[50] | Ye H, Qiao LY, Guo HY, Guo LP, Ren F, Bai JF, Wang YK (2021). Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances. Front Plant Sci 12, 663118. |
[51] | Ye XX, Bi YJ, Ran Q, Zhang XH, Wang BJ (2023). The role of plant WRKY transcription factors against salt stress: a review. Chin J Biotechnol 39, 2600-2611. (in Chinese) |
叶相相, 毕永江, 冉琼, 张晓辉, 王邦俊 (2023). 植物WRKY转录因子在应对盐胁迫中的作用研究进展. 生物工程学报 39, 2600-2611. | |
[52] | Yu YG, Wu YX, He LY (2023). A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant. Plant Mol Biol 113, 171-191. |
[53] | Zhang DY, Zhu ZW, Yang B, Li XF, Zhang HM, Zhu HF (2024). CsWRKY11 cooperates with CsNPR1 to regulate SA-triggered leaf de-greening and reactive oxygen species burst in cucumber. Mol Hortic 4, 21. |
[54] | Zhang GY, Wei BQ (2020). Identification of WRKY gene family and their expression analysis under low-temperature stress in melon (Cucumis melo). J Agric Biotechnol 28, 1761-1775. (in Chinese) |
张高原, 魏兵强 (2020). 甜瓜WRKY基因家族鉴定及其响应低温胁迫的表达分析. 农业生物技术学报 28, 1761-1775. | |
[55] | Zhang LY, Song JN, Lin R, Tang MJ, Shao SJ, Yu JQ, Zhou YH (2022a). Tomato SlMYB15 transcription factor targeted by sly-miR156e-3p positively regulates ABA- mediated cold tolerance. J Exp Bot 73, 7538-7551. |
[56] | Zhang WW, Zhao SQ, Gu S, Cao XY, Zhang Y, Niu JF, Liu L, Li AR, Jia WS, Qi BX, Xing Y (2022b). FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca. Plant Physiol 189, 1037-1049. |
[57] | Zhang Y, Yu HJ, Yang XY, Li Q, Ling J, Wang H, Gu XF, Huang SW, Jiang WJ (2016). CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold- stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108, 478-487. |
[58] | Zhao LP, Wang BK, Yang T, Li N, Yang HT, Wang J, Yan HZ (2024). Investigation of the regulation of drought tolerance by the SlHVA22l gene in tomato. Chin Bull Bot 59, 558-573. (in Chinese) |
赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转 (2024). SlHVA22l基因调节番茄耐旱性. 植物学报 59, 558-573. |
/
〈 |
|
〉 |