研究论文

基于根系表型性状的蚕豆耐盐碱性鉴定与综合评价(长英文摘要)

  • 范惠玲 ,
  • 路妍 ,
  • 金文海 ,
  • 王慧 ,
  • 彭小星 ,
  • 武学霞 ,
  • 刘玉皎
展开
  • 1青海大学, 西宁 810016
    2青藏高原种质资源研究与利用实验室, 西宁 810016
    3河西学院, 张掖 734000

收稿日期: 2024-06-16

  录用日期: 2024-10-14

  网络出版日期: 2024-10-16

基金资助

国家食用豆产业技术体系建设专项(CARS-08);国家自然科学基金(42267008);青海大学两级财政科研实力提升项目-青年创新人才支持计划(2025KTSQ12);青海省重点研发与转化计划(2022-NK-109)

Identification and Comprehensive Evaluation of Faba Bean Salt-alkali Tolerance Based on Root Phenotypic Traits

  • Huiling Fan ,
  • Yan Lu ,
  • Wenhai Jin ,
  • Hui Wang ,
  • Xiaoxing Peng ,
  • Xuexia Wu ,
  • Yujiao Liu
Expand
  • 1Qinghai University, Xining 810016, China
    2Qinghai-Tibet Plateau Germplasm Resources Research and Utilization Laboratory, Xining 810016, China
    3Hexi University, Zhangye 734000, China

Received date: 2024-06-16

  Accepted date: 2024-10-14

  Online published: 2024-10-16

摘要

蚕豆(Vicia faba)耐盐碱性种质鉴定为挖掘耐盐碱基因和选育耐盐碱品种奠定基础, 对盐碱地利用具有重要意义。利用8 g∙L-1混合盐碱溶液(NaCl、Na2CO3和Na2SO4, 质量比为9:1:1, pH9.25)对399份国内外蚕豆种质在萌发期进行胁迫处理, 并测定了3个发芽指标和13个根系指标, 采用相关性、主成分、隶属函数和系统聚类分析, 对各种质的耐盐碱性进行综合评价。结果表明: (1) 在盐碱胁迫下, 根系交叠数受到的影响最大, 关节点次之, 而根平均直径较稳定; (2) 交叠数与总连接点数之间, 分叉数与交叠数、总连接点数之间等大部分指标间均呈极显著正相关(P<0.01); 而根平均直径与根总数量、根尖数量、根总长、端点数、关节点数、连接数、分叉数、交叠数和总连接点数之间呈极显著负相关(P<0.01); (3) 根总表面积、根总投影面积、根总长和根总体积可作为蚕豆萌发期耐盐碱性鉴定的适宜指标; (4) 筛选出2份耐碱盐种质H0000809和H0000653, 2份盐碱敏感种质H0001714和H0002622; (5) 399份蚕豆种质可分为4类, 第I类为耐盐碱种质, 占0.75%; 第II类为中耐盐碱种质, 占8%; 第III类为弱耐盐碱种质, 占52.88%; 第IV类为不耐盐碱种质, 占38.35%。综上, 该研究明确了各指标的变异程度和相关性, 确定了耐盐碱性鉴定的关键指标, 筛选出的极端材料可用于蚕豆耐盐碱机理研究和耐盐碱基因挖掘。

本文引用格式

范惠玲 , 路妍 , 金文海 , 王慧 , 彭小星 , 武学霞 , 刘玉皎 . 基于根系表型性状的蚕豆耐盐碱性鉴定与综合评价(长英文摘要)[J]. 植物学报, 2025 , 60(2) : 204 -217 . DOI: 10.11983/CBB24093

Abstract

INTRODUCTION: Identification of salt-alkali tolerant germplasm in faba bean lays the foundation for the exploration of salt-alkali tolerant genes and for the selection and breeding of salt-alkali tolerant varieties, which is of great significance for the utilization of saline-alkali land.

RATIONALE: Most of the studies on the salt-alkali tolerance of faba beans were focused on the morphological and physiological traits of the aboveground parts, while there are few studies on the phenotypic traits of the roots. The root plays a crucial role in resisting salt-alkali stress. Deep research on the relationship between the phenotypic traits of the root and the salt-alkali tolerance of faba beans will help to comprehensively understand the physiological mechanism of the salt-alkali tolerance.

RESULTS: The results showed that: (1) Under salt-alkali stress, the root overlap number was mostly affected, it was followed by the coila number, while the average diameter of root was affected slightly; (2) Between the overlap number and total number of connection points, among the bifurcation number and the overlap number and total number of connection points, most of indicators were significant positively correlation (P<0.01), while there were significant negatively correlation (P<0.01) among the average diameter of root and total number of root, the number of root tip, total length of root, endpoint number, coila number, linking number, bifurcation number, overlap number and total number of connection points; (3) Total root surface area of root, total projected area of root, total length of root and total volume of root could be used as the key indicators to identify the salt-alkali tolerance of faba bean during the germination period; (4) Two salt-alkali tolerant accessions H0000809 and H0000653, and two salt-alkali sensitive accessions H0001714 and H0002622 were screened out; and (5) The 399 faba bean accessions were divided into 4 groups: group I, salt-alkali tolerance germplasm, accounting for 0.75%; group II, moderately salt-alkali tolerant germplasm, accounting for 8%; group III, weakly saline-tolerant germplasm, accounting for 52.88%; and group IV, salt-alkali sensitive germplasm, constituting 38.35%.

CONCLUSION: Variation and correlation of each index, and the key indicators used to identify salt-alkali tolerance were determined, extreme materials can be selected and used for future study of salt-alkali tolerance mechanisms in faba bean and the excavation of salt-alkali tolerance genes.

Phenotypic differences of faba bean germplasms with different levels of salt-alkali tolerance at different growth stages (A) Root phenotype differences of faba bean germplasms with different levels of salt-alkali tolerance at germination stage (bar=5 cm); (B) Plant phenotype differences of faba bean germplasms with different levels of salt-alkali tolerance at flowering stage (bars=1 cm).

参考文献

[1] Abdel Latef AA, Hasanuzzaman M, Tahjib-Ul-Arif M (2021). Mitigation of salinity stress by exogenous application of cytokinin in faba bean (Vicia faba L.). Not Bot Horti Agrobot Cluj-Napoca 49, 12192.
[2] Ali A, Raddatz N, Pardo JM, Yun DJ (2021). HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. Physiol Plant 174, 546-558.
[3] An YP, Qiang AL, Zhang YY, Zhang WY, Cao GL, Han LZ (2006). Study on characteristics of germination and drought- resistance index by osmotic stress in rice. J Plant Genet Resour 7, 421-426. (in Chinese)
  安永平, 强爱玲, 张媛媛, 张文银, 曹桂兰, 韩龙植 (2006). 渗透胁迫下水稻种子萌发特性及抗旱性鉴定指标研究. 植物遗传资源学报 7, 421-426.
[4] Ben Dkhil B, Denden M (2010). Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus L. (Moench.) seed. Afr J Agric Res 5, 1412-1418.
[5] Bimurzayev N, Sari H, Kurunc A, Doganay KH, Asmamaw M (2021). Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Sci Rep 11, 18198.
[6] Cai KX, Zhang WD, Cheng HT, Li XP, Zhai DP, Guo Y, Jiang XQ, Wu T (2020). Effects of salt stress on physiological changes of five Adzuki bean sprouts stage in northeast China. J Ningxia Univ (Nat Sci Ed) 41, 80-86. (in Chinese)
  蔡可心, 张卫东, 程海涛, 李修平, 翟登攀, 郭勇, 姜雪琪, 邬桐 (2020). 盐胁迫对东北5种红小豆芽期生理变化的影响. 宁夏大学学报(自然科学版) 41, 80-86.
[7] Chen EY, Wang RF, Qin L, Yang YB, Li FF, Zhang HW, Wang HL, Liu B, Kong QH, Guan YA (2020). Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination. Acta Agron Sin 46, 1591-1604. (in Chinese)
  陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安 (2020). 谷子芽期耐盐碱综合鉴定及评价. 作物学报 46, 1591-1604.
[8] Fan YC (2021). Screening of Salt Tolerant Germplasm Resources and Cloning and Expression Analysis of Salt Tolerant Genes in Vicia faba L. Master’s thesis. Xining: Qinghai University. pp. 1. (in Chinese)
  樊有存 (2021). 蚕豆耐盐种质资源筛选与抗盐基因的克隆及表达分析. 硕士论文. 西宁: 青海大学. pp. 1.
[9] Gao ZW (2011). Research on the Salt-alkali Resistance Mechanism of Alfalfa and Oat. PhD dissertation. Changchun: Northeast Normal University. pp. 4-5. (in Chinese)
  高占武 (2011). 紫花苜蓿和燕麦抗盐碱机制研究. 博士论文. 长春: 东北师范大学. pp. 4-5.
[10] Hao SL (2020). Identification and Salt Tolerance Analysis of F-box Genes in Vicia faba L. Master’s thesis. Jingzhou: Yangtze University. pp. 1. (in Chinese)
  郝树林 (2020). 蚕豆F-box基因的鉴定及耐盐性分析. 硕士论文. 荆州: 长江大学. pp. 1.
[11] Hu LL, Wang SH, Wang LX, Cheng XZ, Chen HL (2022). Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage. Acta Agron Sin 48, 367-379. (in Chinese)
  胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖 (2022). 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报 48, 367-379.
[12] Jiang XQ (2015). Study on Salt Tolerance of Red Adzuki Bean at Germination Stage. Master’s thesis. Jiamusi: Jiamusi University. pp. 18. (in Chinese)
  姜雪琪 (2015). 红小豆发芽期的耐盐性鉴定研究. 硕士论文. 佳木斯: 佳木斯大学. pp. 18.
[13] Jin HX, Guo DD, Yang QH, Yu XM, Fu XJ, Yuan FJ (2021). Comprehensive evaluation of salt tolerance in soybean germination period by fuzzy subordinate function method. Mol Plant Breed 19, 8265-8271. (in Chinese)
  金杭霞, 郭丹丹, 杨清华, 郁晓敏, 傅旭军, 袁凤杰 (2021). 利用模糊隶属函数法综合评价大豆萌发期耐盐性. 分子植物育种 19, 8265-8271.
[14] Lang BY, Wang WY, Feng RQ, Zhou ZH, Chen Y, Zhao YL, Jin F, Du YL (2024). Comprehensive evaluation on saline-alkali tolerance of 35 mung bean germplasm resources during germination period and analysis of saline-alkali tolerant mechanism. Shandong Agric Sci 56, 69-79. (in Chinese)
  郎炳尧, 王伟宇, 冯瑞琦, 周志衡, 陈悦, 赵岩林, 金峰, 杜艳丽 (2024). 35份绿豆种质资源萌发期耐盐碱性综合评价及耐盐碱机制分析. 山东农业科学 56, 69-79.
[15] Li XX (2022). Comprehensive Evaluation and Physiological Mechanism of Saline-alkali Tolerance of Wild Soybean. Master’s thesis. Qinhuangdao: Hebei Normal University of Science and Technology. pp. 8-25. (in Chinese)
  李祥祥 (2022). 野生大豆盐碱耐性综合评价及生理机制研究. 硕士论文. 秦皇岛: 河北科技师范学院. pp. 8-25.
[16] Liu SX, Lai JY, Li HM, Chen P, Ji YF, Zhang WH, Ma QB, Jia JT, Liu J (2023). Identification of salt tolerance of soybean landraces at germination stage in Guangdong. J Southern Agric 54, 3228-3238. (in Chinese)
  刘双幸, 赖剑云, 李红梅, 陈沛, 吉浴芳, 张文虎, 马启彬, 贾俊婷, 刘军 (2023). 广东省大豆农家种芽期耐盐性鉴定. 南方农业学报 54, 3228-3238.
[17] Liu W, Long ZX, Zhang XM, Gu WY, Chi XN, Wang YP (2024). The physiological mechanism by which exogenous salicylic acid enhances salt tolerance in Vicia faba seedlings. J Gansu Agric Univ 59(2), 36-44, 53. (in Chinese)
  刘伟, 龙子轩, 张兴民, 顾文媛, 池小娜, 王玉萍 (2024). 外源水杨酸影响蚕豆幼苗耐盐性的生理机制. 甘肃农业大学学报 59(2), 36-44, 53.
[18] Liu XY, Guo XY, Wang XR, Xin DW, Guan RX, Qiu LJ (2024). Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean. Acta Agron Sin 50, 2122-2130. (in Chinese)
  刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟 (2024). 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选. 作物学报 50, 2122-2130.
[19] Nachshon U (2018). Cropland soil salinization and associated hydrology: trends, processes and examples. Water 10, 1030.
[20] Ren JH, Gao PP, Qiao YX, Jing SE (1993). Identification of salt tolerance of mung bean variety resources. Crop Variety Resour (3), 14-15. (in Chinese)
  任建华, 高平平, 乔燕祥, 荆淑娥 (1993). 绿豆品种资源耐盐性鉴定. 作物品种资源 (3), 14-15.
[21] Shi HY, Fan BJ, Liu CY, Wang Y, Wang S, Zhang ZX, Su QZ, Tian J (2024). Identification and evaluation of salt tolerance germplasm of mung bean during germination. Crops. https://link.cnki.net/urlid/11.1808.S.20240401.0958.002. (in Chinese)
  时会影, 范保杰, 刘长友, 王彦, 王珅, 张志肖, 苏秋竹, 田静 (2024). 绿豆种质资源萌发期耐盐性鉴定与评价. 作物杂志. https://link.cnki.net/urlid/11.1808.S.20240401.0958.002.
[22] Shrivastava P, Kumar R (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22, 123-131.
[23] Sun XF, Liu YL (2001). Test on criteria of evaluating salt tolerance of cotton cultivars. Acta Agron Sin 27, 794-801. (in Chinese)
  孙小芳, 刘友良 (2001). 棉花品种耐盐性鉴定指标可靠性的检验. 作物学报 27, 794-801.
[24] Wang G, Yang D, Zhang Y, Li Q, Ji J, Jin C, Wu GX, Guan CF (2020). Na+/H+ antiporter (NHX1) positively enhances cadmium (Cd) resistance and decreases Cd accumulation in tobacco plants cultivated in Cd-containing soil. Plant Soil 453, 389-408.
[25] Wang LZ, Gao FJ, Hua FJ, Cao PP (2015). Study on salt tolerance of different mung bean varieties at germination stage. Shandong Agric Sci 47(9), 31-35. (in Chinese)
  王乐政, 高凤菊, 华方静, 曹鹏鹏 (2015). 不同绿豆品种萌发期耐盐性研究. 山东农业科学 47(9), 31-35.
[26] Wu JF, Yang BW, Xiang XC, Xu L, Yan LM (2017). Identification of salt tolerance in different rice germplasm at different growth stages. Chin Bull Bot 52, 77-88. (in Chinese)
  吴家富, 杨博文, 向珣朝, 许亮, 颜李梅 (2017). 不同水稻种质在不同生育期耐盐鉴定的差异. 植物学报 52, 77-88.
[27] Ya XX, Yang DX, Zhou GM, Chen J, Liu ZX (2022). Identification and evaluation of salt tolerance of pea resources. J Sichuan Agric Univ 40, 505-511. (in Chinese)
  亚秀秀, 杨东旭, 周桂梅, 陈健, 刘振兴 (2022). 豌豆种质资源耐盐性的鉴定与评价. 四川农业大学学报 40, 505-511.
[28] Yang FW (2020). Transcriptome Profile of Faba Bean During Seed Germination Under Salt Stress and Analysis of LEA Gene Family. Master’s thesis. Jingzhou: Yangtze University. pp. 14. (in Chinese)
  杨访问 (2020). 盐胁迫下蚕豆萌发期转录组及LEA基因家族分析. 硕士论文. 荆州: 长江大学. pp. 14.
[29] Yang J (2012). Molecular Cloning, Functional Analysis and Genetic Transformation of a Na+/H+ Antiporter Gene GmNHX1 from Soybean. Master’s thesis. Baoding: Agricultural University of Hebei. pp. 1. (in Chinese)
  杨郡 (2012). 大豆GmNHX1基因的克隆、功能初探及遗传转化. 硕士论文. 保定: 河北农业大学. pp. 1.
[30] Yin GX, Zhang L, She MY (2015). Structural characterization and abiotic stress response of soybean TRK-HKT family genes. Acta Agron Sin 41, 259-275. (in Chinese)
  殷桂香, 张磊, 佘茂云 (2015). 大豆TRK-HKT家族基因结构及逆境胁迫响应机制. 作物学报 41, 259-275.
[31] Yu S, Guo XX, Liang HY, Fu LH, Shi JJ, Zhang YF, Chuang L (2017). Analysis of saline-alkaline tolerance and screening of identification indicators at the germination stage among different mung bean genotypes. Plant Physiol J 53, 1629-1639. (in Chinese)
  于崧, 郭潇潇, 梁海芸, 付鸾鸿, 史京京, 张翼飞, 闯磊 (2017). 不同基因型绿豆萌发期耐盐碱性分析及其鉴定指标的筛选. 植物生理学报 53, 1629-1639.
[32] Zhang DF, Fan GH, Ma YL (2016). Study on the type of saline-alkaline land and saltion correlation of Qaidam Basin. Sci Technol Qinghai Agric For (3), 1-6. (in Chinese)
  张得芳, 樊光辉, 马玉林 (2016). 柴达木盆地盐碱土壤类型及其盐离子相关性研究. 青海农林科技 (3), 1-6.
[33] Zhang XC, Xue XX, Jiang S, Wang YF, Cao YC (2020). Identification of mixed saline-alkali tolerance and screening of indicators in soybean at germination stage. Acta Agric Boreali-Occident Sin 29, 374-381. (in Chinese)
  张新草, 薛项潇, 姜深, 王延峰, 曹永策 (2020). 大豆种质发芽期耐盐碱性鉴定及指标筛选. 西北农业学报 29, 374-381.
[34] Zhou XW, Zhang XR, Sun HX, Zhao X, Zhang N, Yao XD, Xie FT (2022). Evaluation of salt tolerance of soybean germplasms at germination and seedling Stages. J Shenyang Agric Univ 53, 257-264. (in Chinese)
  周秀文, 张晓蕊, 孙贺祥, 赵翔, 张娜, 姚兴东, 谢甫绨 (2022). 大豆种质萌发期和苗期耐盐性评价. 沈阳农业大学学报 53, 257-264.
[35] Zhu ZH, Wang MZ, Song JZ (1989). Identification of salt tolerance of pea variety resources. Crop Variety Resour (4), 29-30. (in Chinese)
  朱志华, 王明珍, 宋景芝 (1989). 豌豆品种资源耐盐性鉴定. 作物品种资源 (4), 29-30.
[36] Zhu ZH, Wang MZ, Song JZ, Zhang XF (1990). Preliminary report on salt tolerance identification of broad bean and cowpea varieties. Crop Variety Resour (4), 29-30. (in Chinese)
  朱志华, 王明珍, 宋景芝, 张晓芳 (1990). 蚕豆和豇豆品种耐盐性鉴定初报. 作物品种资源 (4), 29-30.
[37] Zong XX, Bao SY, Guan JP (2006). Descriptors and Data Standard for Faba Bean (Vicia faba L.). Beijing: China Agriculture Press. pp. 56. (in Chinese)
  宗绪晓, 包世英, 关建平 (2006). 蚕豆种质资源描述规范和数据标准. 北京: 中国农业出版社. pp. 56.
文章导航

/