[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究论文

玉米自然群体自交系农艺性状的多环境全基因组预测初探

  • 李园 ,
  • 范开建 ,
  • 安泰 ,
  • 李聪 ,
  • 蒋俊霞 ,
  • 牛皓 ,
  • 曾伟伟 ,
  • 衡燕芳 ,
  • 李虎 ,
  • 付俊杰 ,
  • 李慧慧 ,
  • 黎亮
展开
  • 1中国农业科学院作物科学研究所, 作物分子育种国家工程研究中心, 作物基因资源与育种全国重点实验室, 北京 100081
    2中国农业大学农学与生物技术学院, 北京 100193
    3黑龙江八一农垦大学农学院, 大庆 163000
*黎亮, 研究员, 博士生导师, 中国农业科学院杰出青年英才, 农业农村部神农英才“青年英才”。在玉米单倍体育种技术方面的工作(参与)获得2017年度教育部技术发明一等奖、2017年度大北农科技奖植物育种奖和2023年度国家技术发明二等奖。目前, 研究团队主要聚焦单倍体技术和全基因组选择技术的有机整合, 以构建工程化的育种流程, 实现不同环境下的田间表型预测, 为创制高产耐密宜机收种质提供技术支撑。E-mail: liliang05@caas.cn

收稿日期: 2024-06-06

  录用日期: 2024-10-14

  网络出版日期: 2024-10-16

基金资助

国家自然科学基金(32272190);中国农业科学院创新工程(2024)

Study on Multi-environment Genome-wide Prediction of Inbred Agronomic Traits in Maize Natural Populations

  • Yuan Li ,
  • Kaijian Fan ,
  • Tai An ,
  • Cong Li ,
  • Junxia Jiang ,
  • Hao Niu ,
  • Weiwei Zeng ,
  • Yanfang Heng ,
  • Hu Li ,
  • Junjie Fu ,
  • Huihui Li ,
  • Liang Li
Expand
  • 1State Key Laboratory of Crop Gene Resources and Breeding, The National Engineering Center for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    3College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163000, China

Received date: 2024-06-06

  Accepted date: 2024-10-14

  Online published: 2024-10-16

摘要

多环境田间测试是选育高产稳产品种的重要途径, 但因其成本高逐渐成为植物育种的瓶颈问题。将稀疏测试与全基因组预测方法相结合可实现对未测表型的预测, 进而减少田间测试的工作量和成本。利用244份玉米(Zea mays)自然群体自交系在两年(2022年和2023年)两点(北京顺义和黑龙江密山) 4个环境下, 针对散粉期、株高、穗位高、穗长、穗行数和行粒数6个代表性农艺性状开展研究, 比较了4种模型(Single、Across、M×E和R-norm)、2种训练群体组成方案(CV1和CV2)以及3种训练集抽样比例(0.5、0.7和0.9)对预测精度的影响。结果表明,上述6个农艺性状的平均预测精度分别为0.67、0.58、0.50、0.33、0.33和0.48; Single模型、Across模型、M×E模型和R-norm模型的平均预测精度分别为0.36、0.52、0.53和0.53; 其中CV1各模型在不同性状中的预测精度范围在0.19-0.65之间, CV2预测精度范围在0.47-0.89之间; 不同抽样比例比较显示, 不同模型中训练集比例的提升对6个性状的预测精度提升有限, 最大提升幅度仅为0.05。综上表明, 在进行多环境预测时, 利用CV2训练群体组成方案并在预测模型中纳入多个环境下的表型数据可提升预测精度。

本文引用格式

李园 , 范开建 , 安泰 , 李聪 , 蒋俊霞 , 牛皓 , 曾伟伟 , 衡燕芳 , 李虎 , 付俊杰 , 李慧慧 , 黎亮 . 玉米自然群体自交系农艺性状的多环境全基因组预测初探[J]. 植物学报, 2024 , 59(6) : 1041 -1053 . DOI: 10.11983/CBB24087

Abstract

Multi-environment field testing is an important way to select optimize maize yield and yield stability varieties. However, because of its high cost, it has gradually become a challenge in plant breeding. The combination of field sparse testing and genome-wide prediction method can be used to predict untested phenotypes, reduced the effort and cost on field testing. In this experiment, 244 inbred lines of natural populations were planted in Shunyi, Beijing and Mishan, Heilongjiang in 2022 and 2023. Six agronomic traits were studied, including days to anthesis, plant height, ear height, ear length, kernel number per row and ear row number. The effects of four different models (Single, Across, M×E and R-norm), two different cross-validation schemes (CV1 and CV2) and three different training sets sampling ratios (0.5, 0.7 and 0.9) on the prediction accuracy were compared. The results showed that the average prediction accuracy of the six agronomic traits was 0.67, 0.58, 0.50, 0.33, 0.33 and 0.48. The average prediction accuracy of the Single model, Across model, M×E model and R-norm model was 0.36, 0.52, 0.53 and 0.53 for each trait. In CV1, the average prediction accuracy of each model in six traits ranged from 0.19 to 0.65, and in CV2, the average prediction accuracy ranged from 0.47 to 0.89. The comparison of different training set sampling ratios shows that the improvement of the proportion of the training sets has limited improvement in the prediction accuracy of different traits in different models, and the maximum is only 0.05. The results show that the CV2 training set can be used to form a scheme and include phenotypic data from multiple environments in the prediction model to provide good prediction accuracy for multi-environment prediction.

[an error occurred while processing this directive]

参考文献

[1] Alemu A, ?strand J, Montesinos-López OA, Isidro Y, Sánchez J, Fernández-Gónzalez J, Tadesse W, Vetukuri RR, Carlsson AS, Ceplitis A, Crossa J, Ortiz R, Chawade A (2024). Genomic selection in plant breeding: key factors shaping two decades of progress. Mol Plant 17, 552-578.
[2] Burgue?o J, De Los Campos G, Weigel K, Crossa J (2012). Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52, 707-719.
[3] Carena MJ, Hallauer AR, Filho JBM (2010). Quantitative Genetics in Maize Breeding. New York: Springer Science & Business Media. pp. 1-6.
[4] Crossa J, De Los Campos G, Pérez P, Gianola D, Burgue?o J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan JB, Arief V, Banziger M, Braun HJ (2010). Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186, 713-724.
[5] Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez- Rodríguez P, De Los Campos G, Montesinos-López OA, Burgue?o J (2016). Genomic prediction of genotype × environment interaction kernel regression models. Plant Genome 9, plantgenome2016. 03.0024.
[6] Ferr?o LFV, Ferr?o RG, Ferr?o MAG, Francisco A, Garcia AAF (2017). A mixed model to multiple harvest-location trials applied to genomic prediction in Coffea canephora. Tree Genet Genomes 13, 95.
[7] Fu JJ, Hao YF, Li HH, Reif JC, Chen SJ, Huang CL, Wang GY, Li XH, Xu YB, Li L (2022). Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Mol Plant 15, 577-580.
[8] Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009). Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92, 433-443.
[9] Jannink JL, Lorenz AJ, Iwata H (2010). Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9, 166-177.
[10] Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M, Burgue?o J, De Los Campos G (2014). A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127, 595-607.
[11] Jarquin D, Howard R, Crossa J, Beyene Y, Gowda M, Martini JWR, Pazaran GC, Burgue?o J, Pacheco A, Grondona M, Wimmer V, Prasanna BM (2020). Genomic prediction enhanced sparse testing for multi-environment trials. G3 (Bethesda) 10, 2725-2739.
[12] Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink JL, Singh RP, Autrique E, De Los Campos G (2015). Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. G3 (Bethesda) 5, 569-582.
[13] Lorenz AJ (2013). Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3(Bethesda) 3, 481-491.
[14] Luo P, Wang HW, Ni ZY, Yang RS, Wang F, Yong HY, Zhang L, Zhou ZQ, Song W, Li MS, Yang J, Weng JF, Meng ZD, Zhang DG, Han JN, Chen Y, Zhang RZ, Wang LW, Zhao M, Gao WW, Chen XY, Li WJ, Hao ZF, Fu JJ, Zhang XC, Li XH (2023). Genomic prediction of yield performance among single-cross maize hybrids using a partial diallel cross design. Crop J 11, 1884-1892.
[15] Meuwissen THE, Hayes BJ, Goddard ME (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819-1829.
[16] Pérez P, De Los Campos G (2014). Genome-wide regression and prediction with the BGLR statistical package. Genetics 198, 483-495.
[17] Roorkiwal M, Jarquin D, Singh MK, Gaur PM, Bharadwaj C, Rathore A, Howard R, Srinivasan S, Jain A, Garg V, Kale S, Chitikineni A, Tripathi S, Jones E, Robbins KR, Crossa J, Varshney RK (2018). Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype?×?environment interaction on predic-tion accuracy in chickpea. Sci Rep 8, 11701.
[18] Sousa MBE, Cuevas J, de Oliveira Couto EG, Pérez- Rodríguez P, Jarquín D, Fritsche-Neto R, Burgue?o J, Crossa J (2017). Genomic-enabled prediction in maize using kernel models with genotype × environment interaction. G3 (Bethesda) 7, 1995-2014.
[19] Terraillon J, Roeber FK, Flachenecker C, Frisch M (2023). Training set designs for prediction of yield and moisture of maize test cross hybrids with unreplicated trials. Front Plant Sci 14, 1080087.
[20] VanRaden PM (2008). Efficient methods to compute genomic predictions. J Dairy Sci 91, 4414-4423.
[21] Wang BB, Lin ZC, Li X, Zhao YP, Zhao BB, Wu GX, Ma XJ, Wang H, Xie YR, Li QQ, Song GS, Kong DX, Zheng ZG, Wei HB, Shen RX, Wu H, Chen CX, Meng ZD, Wang TY, Li Y, Li XH, Chen YH, Lai JS, Hufford MB, Ross-Ibarra J, He H, Wang HY (2020). Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet 52, 565-571.
[22] Xu YB, Liu XG, Fu JJ, Wang HW, Wang JK, Huang CL, Prasanna BM, Olsen MS, Wang GY, Zhang AM (2019). Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 16, 100005.
[23] Yang N, Lu YL, Yang XH, Huang J, Zhou Y, Ali F, Wen WW, Liu J, Li JS, Yan JB (2014). Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10, e1004573.
[24] Zhu XT, Leiser WL, Hahn V, Würschum T (2021). Training set design in genomic prediction with multiple biparental families. Plant Genome 14, e20124.
文章导航

/

[an error occurred while processing this directive]