研究论文

不同熟期玉米叶片衰老特性及其对叶际细菌的影响

  • 杨文丽 ,
  • 李钊 ,
  • 刘志铭 ,
  • 张志华 ,
  • 杨今胜 ,
  • 吕艳杰 ,
  • 王永军
展开
  • 1吉林农业大学农学院, 长春 130118; 2吉林省农业科学院农业资源与环境研究所/农业农村部作物生理生态与耕作重点实验室, 长春 130033; 3吉林大学植物科学学院/吉林省植物遗传改良工程实验室, 长春 130062

收稿日期: 2024-03-09

  修回日期: 2024-05-07

  网络出版日期: 2024-06-11

基金资助

吉林省科技发展计划项目(No.20220508096RC)、国家重点研发计划项目(No.2023YFD2301703)、现代农业产业技术体系项目(No.CARS-02-19)和国家自然科学基金项目(No.U23A6001-01)

Senescence Characteristics of Maize Leaves at Different Maturity Stages and Their Effect on Interleaf Bacteria

  • YANG Wen-Li ,
  • LI Zhao ,
  • LIU Zhi-Ming ,
  • ZHANG Zhi-Hua ,
  • YANG Jin-Qing ,
  • LV Yan-Jie ,
  • YU Yong-Jun
Expand
  • 1College of Agronomy, Jilin Agricultural University, Changchun 130118, China; 2Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/Key Laboratory of Crop Physiology, Ecology and Tillage, Ministry of Agriculture and Rural Affairs, Changchun 130033, China; 3School of Plant Science, Jilin University/Jilin Plant Genetic Improvement Engineering Laboratory, Changchun 130062, China

Received date: 2024-03-09

  Revised date: 2024-05-07

  Online published: 2024-06-11

Supported by

Jilin Province Key Technology R&D Program; National Key Research and Development Program (NKRDP) projects; National Natural Science Foundation of China (NSFC); Modern Agricultural Industrial Technology System Program

摘要

叶片作为作物光合器官, 其衰老进程对产量形成具有重要影响, 但叶片衰老与叶际微生物间的关系研究较少。为探讨玉米叶片衰老过程对叶际细菌群落的影响, 本研究以东北春玉米区3个不同熟期玉米品种(早熟品种黑科玉17, H17、中熟品种中单111, Z111、和晚熟品种沈玉21, S21)为试验材料, 从早熟品种开花期开始对3个玉米品种穗位叶进行5次取样, 测定衰老生理指标, 同时基于高通量测序技术测定叶际内源和外源细菌的群落组成。结果表明, 在生育后期, 中熟和晚熟品种叶含水率、POD和SOD活性显著高于早熟品种。在门水平, 蓝菌门(Cyanobacteria)是中熟和晚熟的特有菌门; 在属水平, 玉米叶片内外源共有细菌鞘氨醇单胞菌属(Sphingomonas)、甲基杆菌属(Methylobacterium)、异常球菌属(Deinococcus)相对丰度在IV和V时期显著降低, 而内源细菌链霉菌属(Streptomyces)和外源细菌P3OB-42属则在衰老后期显著富集, 三个品种变化趋势相似, 相对丰度差异显著。内外源细菌相对丰度存在显著差异, 前5位的外源细菌占60%以上, 而对内源细菌而言, 前5位仅占30%以上。可溶性糖含量、光合色素含量和SOD活性与细菌群落结构和丰富度显著相关。综上, 中熟和晚熟品种能有效延长叶片持绿期, 维持后期叶片生理活性, 延缓衰老。衰老对内源细菌群落组成和多样性的影响显著大于外源细菌, 不同熟期品种间存在显著分异的菌属, 且可溶性糖含量、光合色素含量和SOD活性是影响叶际细菌群落以及优势物种的关键因子。

本文引用格式

杨文丽 , 李钊 , 刘志铭 , 张志华 , 杨今胜 , 吕艳杰 , 王永军 . 不同熟期玉米叶片衰老特性及其对叶际细菌的影响[J]. 植物学报, 2024 , 59(6) : 0 -0 . DOI: 10.11983/CBB24037

Abstract

As a photosynthetic organ of crops, the senescence process of leaves has an important impact on yield formation, but the relationship between leaf senescence and interleaf microorganisms has been less studied. In order to explore the influence of the senescence process of maize leaves on the interleaf bacterial community, this study took three maize varieties of different maturity (early maturity variety Heike Yu 17, H17, medium maturity variety Zhongdan 111, Z111, and late maturity variety Shen Yu 21, S21) in the spring maize area of Northeast China as the experimental materials, and the leaves of the ear position of the three maize varieties were sampled five times starting from the blooming stage of early maturity varieties, and the physiological indexes of senescence were determined, and at the same time The community composition of endogenous and exogenous bacteria in the interleaf was determined based on high-throughput sequencing technology. The results showed that at the late reproductive stage, leaf water content, POD and SOD activities were significantly higher in the mid- and late-maturing varieties than in the early-maturing varieties. At the phylum level, Cyanobacteria were endemic to medium- and late-maturing cultivars; at the genus level, the relative abundance of endogenous shared bacteria Sphingomonas, Methylobacterium, and Deinococcus in maize leaves was significantly reduced during IV and V periods The relative abundance of endogenous bacteria Streptomyces and exogenous bacteria P3OB-42 were significantly enriched in the late senescence period, with similar trends and significant differences in relative abundance among the three species. The relative abundance of endogenous and exogenous bacteria differed significantly, with the top 5 exogenous bacteria accounting for more than 60%, while for endogenous bacteria, the top 5 accounted for only more than 30%. Soluble sugar content, photosynthetic pigment content and SOD activity were significantly correlated with bacterial community structure and abundance. In conclusion, medium- and late-maturing varieties were effective in prolonging leaf greening period, maintaining late leaf physiological activity and delaying senescence. The effects of senescence on the composition and diversity of endogenous bacterial communities were significantly greater than those of exogenous bacteria, and there were significantly differentiated genera among varieties of different maturity stages. Moreover, soluble sugar content, photosynthetic pigment content and SOD activity were the key factors affecting the interleaf bacterial communities as well as the dominant species.

参考文献

[1]陈建勋,王晓峰( 2015.).植物生理学实验指导 .广州华南理工大学出版社, :72-73.
[2]代崇雯 (2021).外源缓解物质对红椿干旱胁迫的调控作用及生理机制. 硕士论文. 西南大学.
[3]侯乾, 王万兴, 杨煜, 胡军, 卞春松, 金黎平, 李广存, 熊兴耀 (2019).马铃薯根际微生物群落构成及土壤理化性质随马铃薯生育期变化的动态关系.2019年中国作物学会学术年会论文摘要集. 267, 1.
[4]李兆伟 (2014).水稻叶片早衰突变体的糖代谢基因表达与抗氧化生理调控. 博士论文. 杭州:浙江大学.., :-.
[5]刘辉, 韦璐璐, 朱龙发, 韦豪, 白云霞, 刘小玲, 李树波(2023).鞘氨醇单胞菌的研究进展.微生物学通报, (06):2738-2752.
[6]刘盈盈, 张陈, 江世杰, 周正富, 陈明, 张维, 王劲(2015).非生物胁迫下耐辐射异常球菌基因功能分析.微生物学通报, (08):1474-1481.
[7]苏品, 张德咏, 张卓, 陈昂, 程菊娥, 曾军, 谭石勇(2021).光合细菌的农用微生物功能解读.中国生物防治学报, 37:30-37.
[8]童淑媛, 宋凤斌, 徐洪文 (2009).不同品种玉米籽粒成熟期间叶片形态衰老的差异.华北农学报24, 11-15.., :-.
[9]王惠贞, 赵洪亮, 冯永祥, 姜乐, 宁大可, 谢立勇, 林而达(2014).北方水稻生育后期剑叶可溶性物质含量及植株生产力对浓度增高的响应.作物学报, (02):320-328.
[10]王平 (2015).外源褪黑素对苹果叶片衰老的调控及相关自噬基因的功能分析.博士论文.咸阳:西北农林科技大学.., :-.
[11]王永军, 吕艳杰, 刘慧涛(2019).东北春玉米高产与养分高效综合管理.中国农业科学, 52:3533-3535.
[12]张科, 李臻, 郑瑶, 麻红星, 刘梦含, 丁慧杰, 王瑜, 刘丽, 夏西超(2020).河南叶县岩盐可培养中度嗜盐菌的多样性.微生物学通报, 47(12):3987-3997.
[13]张玉琴, 李文均, 郝涤非, 徐丽华, 姜成林(2006).异常球菌属的分类及应用研究进展.微生物学通报, (06):133-137.
[14]张志良, 瞿伟菁 (2005).植物生理学实验指导(第3版). 北京: 高等教育出版社. pp 67–159.., :-.
[15]赵国盛, 张德咏, 刘勇(2018).光合细菌在植物诱导系统抗性中的应用前景.贵州农业科学杂志, 46:53-56.
[16]周建琴, 栾迎春, 张玉琴, 高凌玉, 沈继红, 孙承航(2007).异常球菌~形态和辐射抗性的研究.微生物学通报, 04:682-685.
[17]周萌, 张嘉俊, 罗洋(2023).微生物肥料的作用机理、现状及展望.中国农学通报, (33):68-75.
[18]Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016).Microbial hub taxa link host and abiotic factors to plant microbiome variation. Plos Biol 14, e1002352.., :-.
[19]Arnault G, Mony C, Vandenkoornhuyse P(2022).Plant microbiota dysbiosis and the anna karenina principle.Trends Plant Sci, 28:18-30.
[20]Atamna-Ismaeel N, Finkel O, Glaser F, von Mering C, Vorholt JA, Koblizek M(2012).Bacterial anoxygenic photosynthesis on plant leaf surfaces.Env Microbiol Rep, 4(2):209-216.
[21]Aydogan EL, Moser G, Muller C, Kampfer P, Glaeser SP (2018).Long-term warming shifts the composition of bacterial communities in the phyllosphere of Galium album in a permanent grassland field-experiment. Front Microbiol 9, 144.., :-.
[22]Borrell AK, Hammer GL, Henzell RG(2000).Does maintaining green leaf area in sorghum improve yield under drought.II. dry matter production and yield. Crop Sci, 40:1037-1048.
[23]Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P(2013).Structure and functions of the bacterial microbiota of plants.Annu Rev Plant Biol, 64:807-838.
[24]Canfield DE, Glazer AN, Falkowski PG(2010).The evolution and future of Earth's nitrogen cycle.Sci, 330:192-196.
[25]Chen Y, Zhou D, Qi D, Gao Z, Xie J, Luo Y (2018) Growth promotion and disease suppression ability of a Streptomyces sp.CB-75 from banana rhizosphere soil. Front Microbiol 8, 2704., :-.
[26]Cheng JE, Su P, Zhang ZH, Zheng LM (2022).Metagenomic analysis of the dynamical conversion of photosynthetic bacterial communities in different crop fields over different growth periods. Plos One 17 (7), e0262517-e0262517.., :-.
[27]Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Wunder J, Coupland G(2017).Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time.J ECOL, 11:43-55.
[28]Eiler A, Heinrich F, Bertilsson S(2012).Coherent dynamics and association networks among lake bacterioplankton taxa.ISME J, 6(2):330-342.
[29]Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A(2008).Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica.ISME J, 2(5):561-570.
[30]Geevason S, Napoli M, Dreur-zhiga A, Lazzarelli C(2019).Attenuation of negative effects of senescence in human skin using an extract from Sphingomonas hydrophobicum: development of new skin care solution.J Cosmet Sci, 41:391-397.
[31]Goudjal, Y., Toumatia, O., Sabaou, N(2013).Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity.World J Microb Biot, 29:1821-1829.
[32]Helfrich EJN, Vogel CM, Ueoka R, Sch?afer M, Ryffel F, M?uller DB, Probst S, Kreuzer M, Piel J, Vorholt JA(2018).Bipartite interactions,antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome.Nat Microbiol, 3:909-919.
[33]Hernandez J A, Jimenez A, Mullineaux P, Sevilla F(2000).Tolerance of pea (Pisum sativum L.to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ, 23:853-862.
[34]Hu J, Wang Y L, Yang L X, Zhou J, Zhu J G(2006).Effect of free-air CO2 enrichment (FACE) on concentrations of soluble protein in functional leaves and roots of japonica rice (Oryza sativa L.cultivar Wuxiangjing 14. J Agro Env Sci, 25:1117-1121.
[35]Hu T, Yuan L, Wang J, Kang S, Li F(2010).Antioxidation responses of maize roots and leaves to partial root-zone irrigation.Agr Water Manage, 98:164-171.
[36]Hunter PJ, Hand P, Pink, D, Whipps JM, Bending GD(2010).Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere.Appl Environ Microb, 76:8117-8125.
[37]Innerebner G, Knief C, Vorholt JA(2011).Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system.Appl Environ Microb, 77:3202-3210.
[38]Kolvenbach BA and Corvini FX(2012).The degradation of alkylphenols by Sphingomonas sp.strain TTNP3 – a review on seven years of research. Ew Biotechnol, 30(1):43-56.
[39]Lindow SE and Brandl MT(2003).Microbiology of the phyllosphere.Appl Environ Microb, 69(4):1875-1883.
[40]Luo L, Wang P, Zhai ZY, Su P, Tan X, Liu Y (2019).The effects of Rhodopseudomonas palustris PSB06 and CGA009 with different agricultural applications on rice growth and rhizosphere bacterial communities. AMB Express 9(1), 173.., :-.
[41]Ma YY and Chu HY (2021).Field Sampling and Sample Storage of Wheat-associated Microbiomes. Bio-101 e2003668. https://cn.bio-protocol.org/bio101/e2003668., :-.
[42]Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK(2012).Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum L) by producing phytohormone.Anton Leeuw Int J G, 101(4):777-786.
[43]Morano KA, Grant CM, Moye-Rowley WS(2012).The response to heat shock and oxidative stress in Saccharomyces cerevisiae.Genetics, 90(4):1157-1195.
[44]Murty MG(1983).Nitrogen fixation (acetylene reduction) in the phyllosphere of some economically important plants.Plant Soil, 73(1):151-153.
[45]Naveed M, Reichenauer GT, Sessitsch A, Mitter B, Wieczorek K(2014).Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp.FD17. Environ Exp Bot, 97(97):30-39.
[46]Rastogi G, Coaker GL, Leveau JHJ(2013).New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches.Fems Microbiol Lett, 348(1):1-10.
[47]Ren GD, Zhu CW, Zhu JG(2015).Response of soil,leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy.Plant Soil, 392(1-2):27-44.
[48]Schlechter RO, Miebach M, Remus-Emsermann MNP(2019).Driving factors of epiphytic bacterial communities: a review.J Adv Res, 19:57-65.
[49]Singh P, Santoni S, This P, Peros JP (2018).Genotype–environment interaction shapes the microbial assemblage in grapevine’s phyllosphere and carposphere: an NGS approach. Microorganisms 6, 11.., :-.
[50]Su P, Tan X, Li C, Zhang D, Cheng J, Zhang S(2017).Photosynthetic bacterium Rhodopseudomonas palustris GJ-22 induces systemic resistance against viruses.Microb Biotechno, 10(3):612-624.
[51]Truchado P, Gil MI, Moreno-Candel M, Allende A(2019).Impact of weather conditions,leaf age and irrigation water disinfection on the major epiphytic bacterial genera of baby spinach grown in an open field.Food Microbio, 78:46-52.
[52]Velikova V, Yordanov I, Edreva A(2000).Oxidative stress and some antioxidant systems in acid rain-treated bean plants.Protective role of exogenous polyamines. Plant Sci, 151:59-66.
[53]Vorholt JA (2012).Microbial life in the phyllosphere. Nat Rev Microbiol.pp.828-840.., :-.
[54]Xiong C., He JZ, Zhang LM (2021). DNA Extraction, Amplification and Source-tracking., :-.
[55]Analysis for Plant Microbiomes.Bio-101 e2003695. https://doi.org/10.21769/BioProtoc.2003695.., :-.
[56]Yadav RK, Karamanoli K, Vokou D (2005).Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features Microb Eco 50(2), 185-196.., :-.
[57]Yang CH, Crowley DE, Borneman J, Keen NT(2001).Microbial phyllosphere populations are more complex than previously realized.P Nat Acad Sci USA, 98(7):3889-3894.
[58]Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E(2010).Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants.Microb Ecol, 59(2):357-368.
文章导航

/