[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告

基于高密度Bin图谱的水稻苗期耐热性QTL定位

展开
  • 1江苏省农业科学院粮食作物研究所, 国家水稻改良中心南京分中心, 国家耐盐碱水稻技术创新中心华东中心, 江苏省优质水稻工程技术研究中心, 南京 210014; 2江苏省农业科学院无锡分院生物育种研究室, 无锡 214000

收稿日期: 2024-03-28

  修回日期: 2024-05-20

  网络出版日期: 2024-05-30

基金资助

国家产业技术体系建设专项(No. CARS-01)和江苏省种业振兴“揭榜挂帅项目(No. JBGS(2021)040)

Mapping of QTL for Heat Tolerance at Seedling Stage in Rice Based on a High-Density Bin Map

Expand
  • 1Institute of Food Crops, Jiangsu Academy of Agricultural Sciences; Nanjing Branch of China National Center for Rice Improvement; East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice; Jiangsu High Quality Rice Research & Development Center, Nanjing 210014, China; 2Biological Breeding Research Laboratory, Wuxi Branch of Jiangsu Academy of Agricultural Sciences, Wuxi 214000, China

Received date: 2024-03-28

  Revised date: 2024-05-20

  Online published: 2024-05-30

摘要

鉴定控制水稻(Oryza sativa)高温耐性的新位点和候选基因, 为耐热遗传育种提供支撑,具有重要的理论和实践意义。利用粳稻(O. sativa subsp. japonica)品种TD70和籼稻(O. sativa subsp. indica)品种Kasalath衍生的重组自交系群体(RILs)为研究材料, 构建了基于深度重测序的高密度Bin遗传图谱, 以幼苗存活率为指标, 使用QTL IciMappingv软件完备复合区间作图法对控制水稻苗期高温胁迫下的幼苗存活率进行QTLs分析。共检测到26个控制苗期耐热性QTLs, 分布在除第3号染色体外的11条染色体上, LOD值为2.59–16.15, 其中4个QTLs的LOD值大于10, 7个QTLs和已知高温耐性QTLs的位置存在重叠或者部分重叠, 其中主效QTL位点qHTSR5.1位于第5号染色体20.41–20.48 Mb区间, LOD值为12.07, 解释4.86%的表型贡献率。对4个主效QTLs区间进行基因功能注释和亲本间序列分析, 共发现27个注释有功能、在2个亲本间编码区存在非同义突变的基因。根据候选基因SNP的类型对RILs群体家系进行基因等位型分类和效应分析, 发现5个基因其不同等位型的RILs家系在高温处理后的幼苗存活率上存在显著差异, 推测可能为候选基因, 可用于后续水稻高温耐性的分子机理研究。

本文引用格式

赵凌, 管菊, 梁文化, 张勇, 路凯, 赵春芳, 李余生, 张亚东 . 基于高密度Bin图谱的水稻苗期耐热性QTL定位[J]. 植物学报, 0 : 0 -0 . DOI: 10.11983/CBB24047

Abstract

Identification of new loci and genes related to heat tolerance is very important for the genetic mechanism research and breeding of new heat-tolerant rice varieties. A recombinant inbred lines (RILs) was developed by crossing the japonica rice TD70 and the indica rice Kasalath. The high-density genetic linkage map with recombination Bin markers was constructed based on the re-sequencing. Based on the genotype and phenotype data of the RILs, QTL mapping of the high temperature seedling survival rate (HTSR) was performed by ICIM method of the QTL Ici Mapping software. 26 QTLs related to HTSR of rice were detected, distributed on 12 chromosomes except 3. The LOD value of single QTL ranged from 2.59–16.15, respectively. Among of them, four QTLs were detected with LOD values greater than 10. Seven QTLs were found to locate in the same interval or adjacent to known heat tolerance QTLs. Major locus qHTSR5.1 located in the 20.41-20.48 Mb of Chr. 5 with LOD value 12.07, which explained 4.86% of the total phenotypic variation for HTSR. According to the annotation and sequences analysis of genes located in the region of four major QTLs, we found that twenty-seven annotated genes with non-synonymous mutations in the coding regions between TD70 and Kasalath. The HTSR of RILs had significant difference between the RILs with different haplotype of five genes, indicating that they might be the candidate genes for HTSR. 
[an error occurred while processing this directive]

参考文献

[1]曹志斌, 李瑶, 曾博虹, 毛凌华, 蔡耀辉, 吴晓峰, 袁林峰(2020).非洲栽培稻垩白粒率耐热性QTL的定位.中国水稻科学, 34:135-142. [2]郭虹霞, 王创云, 赵丽, 王陆军, 张丽光, 邓妍(2019).水稻中2个小分子热激蛋白基因启动子的序列分析及功能鉴定.西北农业学报, 28:1079-1086. [3]郝立生, 马宁, 何丽烨(2022).2022年长江中下游夏季异常干旱高温事件之环流异常特征.干旱气象, 40:721-732. [4]阚义, 林鸿宣(2022).水稻高温感知及响应机制的研究进展.自然杂志, 44:411-421. [5]奎丽梅, 谭禄宾, 徐建, 卢义宣, 孙传清(2008).云南元江野生稻抽穗开花期耐热QTL定位.农业生物技术学报, 16:461-464. [6]栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅(2016).植物热激蛋白研究进展.生物技术通报, 32:7-13. [7]刘进, 崔迪, 余丽琴, 张立娜, 周慧颖, 马小定, 胡佳晓, 韩冰, 韩龙植, 黎毛毛(2022).水稻苗期耐热种质资源筛选及QTL定位.中国水稻科学, 36:259-268. [8]刘进, 胡佳晓, 马小定, 陈武, 勒思, , 崔迪, 周慧颖, 张立娜, , 黎毛毛, 韩龙植, 余丽琴(2022).水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位.中国农业科学, 55:4327-4341. [9]盘毅, 陈立云, 肖应辉(2008).水稻耐热遗传育种及热激蛋白的研究综述.作物研究, 22:363-367. [10]盘毅, 罗丽华, 邓化冰, 张桂莲, 唐文邦, 陈立云, 肖应辉(2011).水稻开花期高温胁迫下的花粉育性QTL定位.中国水稻科学, 25:99-102. [11]沈泓, 姚栋萍, 吴俊, 罗秋红, 吴志鹏, 雷东阳, 邓启云, 柏斌(2022).灌浆期不同时段高温对稻米淀粉理化特性的影响.中国水稻科学, 36:377-387. [12]宋有金, 吴超, 李子煜, 唐设, 李刚华, 王绍华, 丁艳锋(2021).水稻产量对生殖生长阶段不同时期高温的响应差异.中国水稻科学, 35:177-186. [13]陶磊(2020).水稻开花期耐高温QTL分析及精细定位.四川农业大学硕士论文, -:25-27. [14]王建康(2009).数量性状基因的完备区间作图方法.作物学报, 35:239-245. [15]魏昭然(2020).水稻苗期高温关键候选位点鉴定.山东农业大学博士论文, -:21-23. [16]杨飞(2020).水稻灌浆期耐热性及主要农艺性状的全基因组关联分析., -..华中农业大学博士论文, -:27-29. [17]杨军, 章毅之, 贺浩华, 李迎春, 陈小荣, 边建民, 金国花, 李翔翔, 黄淑娥(2020).水稻高温热害的研究现状与进展.应用生态学报, 31:2817-2830. [18]杨梯丰, 刘斌(2009).水稻耐热性QTL鉴定的研究进展.广东农业科学, -:16-20. [19]俞佳虹, 冯坤, 程远, 叶青静, 阮美颖, 王荣青, 李志邈, 周国治, 姚祝平, 魏家香, 杨悦俭, 万红建(2017).植物小热激蛋白的研究进展.分子植物育种, 15:3016-3023. [20]张涛, 杨莉, 蒋开锋, 黄敏, 孙群, 陈温福, 郑家奎(2008).水稻抽穗扬花期耐热性的QTL分析.分子植物育种, 6:867-873. [21]张亚东, 梁文化, 赫磊, 赵春芳, 朱镇, 陈涛, 赵庆勇, 赵凌, 姚姝, 周丽慧, 路凯, 王才林(2021).水稻RIL群体高密度遗传图谱构建及粒型QTL定位.中国农业科学, 54:5163-5176. [22]赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东(2022).利用高密度图谱定位水稻抽穗期剑叶叶绿素含量.中国农业科学, 55:825-836. [23]朱昌兰, 江玲, 张文伟, 王春明, 翟虎渠, 万建民(2006).稻米直链淀粉含量和胶稠度对高温耐性的分析.中国水稻科学, 20:248-252. [24]朱昌兰, 肖应辉, 王春明, 江玲, 翟虎渠, 万建民(2005).水稻灌浆期耐热害的数量性状基因位点分析.中国水稻科学, 19:117-121. [25]Bauer D, Meinhold S, Jakob RP, Stigler J, Merkel U, Maier T, Rief M, Zoldák G(2018).A folding nucleus and minimal ATP binding domain of HSP70 identified by single-molecule force spectroscopy.Proc Nati Acad Sci U S A, 115:4666-4671. [26]Cao ZB, Li Y, Tang HW, Zeng BH, Tang XY, Long QZ, Xf WU, Cai YH, Yuan LF, Wan JL(2020).Fine mapping of the qHTB1-1 QTL,which confers heat tolerance at the booting stage,using an Oryza rufipogon Griff introgression line .Theor Appl Genet, 133:1161-1175. [27]Chen L, Wang Q, Tang M, Zhang X, Pan Y, Yang X, Gao G, Lv R, Tao W, Jiang L, Liang T(2021).QTL Mapping and identification of candidate genes for heat tolerance at the flowering stage in rice.Front Genet, 11:621-871. [28]Chen XG, Chen S(2018).China feels the heat: negative impacts of high temperatures on China's rice sector.Australian Journal of Agricultural and Resource Economics, 62:576-588. [29]Haq U, Khan A, Ali M, Khattak A, Gai WX, Zhang HX, Wei AM, Gong ZH(2019).Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses.Int J Mol Sci , 20:5321--. [30]IPCC(2022).Climate change 2021: The physical science basis. Contribution of working group to the sixth assessment report of the intergovernmental panel on climate change..Cambridge university press, -:199-200. [31]Jacob P, Hirt H, Bendahmane A(2017).The heat-shock proteinchaperone network and multiple stress resistance.Plant Biotechnol J, 15:405-414. [32]Jagadish SVK, Cairns J, Lafitte R, Wheeler TR, Price AH, Craufurd PQ(2010).Genetic analysis of heat tolerance at anthesis in rice.Crop Sci, 50:1633-1641. [33]Kan Y, Mu XR, Zhang H, Gao J, Han JX, Ye WW, Lin HX(2022).TT2 controls rice thermos tolerance through SCT1-dependent alteration of wax biosynthesis.Nat Plants, 8:53-67. [34]Khan S, Anwar S, Ashraf M Y, Khaliq B, Sun M, Hussain S, Gao Z Q, Noor H, Alam S(2019).Plants mechanisms and adaptation strategies to improve heat tolerance in rice.Plants, 8:508--. [35]Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish SK, Kusolwa P, Rathinasabapathi B(2018).Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress.Front plant sci , 9:1578--. [36]Lee BH, Won SH, Lee HS, Miyao M, Chung WI, Kim IJ, Jo J(2000).Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice.Gene, 245:283-290. [37]Li XM, Chao DY, Wu Y, Huang XH, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan JX, Gao JP, Lin HX(2015).Natural alleles of a proteasome α2 subunit gene contribute to thermos tolerance and adaptation of African rice.Nat Genet, 47:827-833. [38]Liu JP, Zhang CC, Wei CC, Liu X, Wang MG, Yu FF, Xie Q, Tu JM(2016).The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice.Plant Physiol, 170:429-443. [39]Mccouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Mccouch S, Cho Y, Paul E, Morishima H(1997).Report on QTL nomenclature.Rice Genet Newsl, 14:11-13. [40]Meng L, Li H, Zhang L, Wang J(2015).QTL ICIMAPPING: integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations.Crop J, 3:269-283. [41]Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Yutaka S(2004).Over-expression of a small heat shock protein,sHSP17 confers both heat tolerance and UV-B resistance to rice plants..Mol Breeding, 13:165-175. [42]Murthy VS, Ravishankar KV(2016).Molecular mechanisms of heat shock proteins and thermos tolerance in plants.Abiotic Stress Physiol Horticultural Crops, 8:71-83. [43]Sarkar NK, Kim YK, Grover A (2009).Rice sHsp genes: genomic organization and expression profiling under stress and development.BMC Genomics, 10:393-410. [44]Siddique M, Gernhard S, Von Koskull-During P, Vierling E, Scharf K-D(2008).The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties.Cell Stress Chaperones, 13:183-197. [45]Wang D, Qin BX, Li X, Tang D, Zhang YE, Cheng ZK, Xue YB(2016).Nucleolar DEAD-Box RNA helicase TOGR1 regulates thermos tolerant growth as a Pre-rRNA chaperone in rice..PLoS Genet , 12:e1005844--. [46]Xiao YH, Pan Y, Luo LH, Zhang GL, Deng HB, Dai LY, Liu XH, Tang WB, Chen L Y, Wang G L(2011).Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L).Euphytica, 178:331-338. [47]Yang J, Ji LX, Zhu BH, Yuan XJ, Jin DM, Xie GS(2018).OsCML16 interacts with a novel CC-NBS-LRR protein OsPi304 in the Ca2+/Mg2+ dependent and independent manner in rice.Biochem Biophys Res Commun, 504:346-351. [48]Zhang KM, Ezemaduka AN, Wang Z, Hu HL, Shi XD, Liu C, Lu XP, Fu XM, Chang ZY, Yin CC(2015).A novel mechanism for small heat shock proteins to function as molecular chaperones.Sci Rep, 5:1-8. [49]Zhang Y, Zou BH, Lu S, Ding Y, Liu H, Hua J(2016).Expression and promoter analysis of the OsHSP16.9C gene in rice.Biochem Biophys Res Commun, 479:260-265. [50]Zheng KW, Zhao J, Lin DZ, Chen JY, Xu JL, Zhou H, Teng S, Dong YJ(2016).The rice TCM5 gene encoding a novel Deg protease protein is essential for chloroplast development under high temperatures.Rice , 9:13--. [51]Zhu S, Huang RL, Wai HP, Xiong HL, Shen XH, He HH, Yan S(2017).Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice.Physiol Mol Bio Plants, 23:817-825.
文章导航

/

[an error occurred while processing this directive]