[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
技术方法

湖北地黄CRISPR/Cas9基因编辑体系的建立

展开
  • 1河南农业大学农学院, 郑州 450046
    2福建农林大学农学院, 福州 350002
共同第一作者

收稿日期: 2022-10-21

  录用日期: 2023-03-17

  网络出版日期: 2023-03-28

基金资助

国家自然科学基金(81473299);河南省高等学校重点科研项目(22A360009)

Establishment of CRISPR/Cas9 Gene Editing System in Rehmannia henryi

Expand
  • 1College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
    2College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
These authors contributed equally to this paper

Received date: 2022-10-21

  Accepted date: 2023-03-17

  Online published: 2023-03-28

摘要

湖北地黄(Rehmannia henryi)是一种具有重要价值的药用植物, 其基因编辑研究还未见报道。为建立湖北地黄基因编辑体系, 克隆了类胡萝卜素合成途径中八氢番茄红素脱氢酶(PDS)的编码基因, 并构建RhPDS1基因的CRISPR/Cas9载体, 以根癌农杆菌介导法转化湖北地黄基因组。结果表明, RhPDS1转录本含1 764 bp的开放阅读框(ORF), 其推测的氨基酸序列具有八氢番茄红素脱氢酶的典型结构域。RhPDS1基因在蕾、花和嫩叶中的相对表达量较高。利用基因编辑获得3个具有白化表型的再生株系, 白化苗分化率为3.7%。测序结果表明, 3个突变体属于2个基因编辑事件, 靶点序列分别为1 bp或/和5 bp碱基缺失, 造成移码突变。白化苗突变体的叶绿素和类胡萝卜素含量极显著低于野生型, RhPDS1基因的表达量也显著下降。综上, 该研究克隆了RhPDS1基因, 并利用CRISPR/Cas9技术实现了对RhPDS1基因的靶向敲除, 为湖北地黄的功能基因组学研究和野生驯化奠定了技术基础。

本文引用格式

苗春妍, 李铭铭, 左鑫, 丁宁, 杜家方, 李娟, 张重义, 王丰青 . 湖北地黄CRISPR/Cas9基因编辑体系的建立[J]. 植物学报, 2023 , 58(6) : 905 -916 . DOI: 10.11983/CBB22250

Abstract

Rehmannia henryi is an important plant with great medicinal value, but no research of CRISPR/Cas9 has been done on this species. To establish the gene editing system of R. henryi, the gene encoding phytoene desaturase (PDS) in carotenoid biosynthesis was screened, and the CRISPR/Cas9 vector of RhPDS1 was constructed and transformed into R. henryi genome by Agrobacterium-mediated transformation method. The transcript of RhPDS1 with a 1 764 bp open reading frame (ORF) of RhPDS1 was obtained, the deduced amino acid sequence of RhPDS1 has the typical structural domains of phytoene desaturase. RhPDS1 showed higher expression levels in bud, flower and new leaf. Using CRISPR/Cas9 method, three regenerated shoots with albino phenotype were finally obtained, the differentiation rate of albino shoot was 3.7%. Sequencing analysis revealed that the three albino shoots belong to 2 editing events, in which deletion of 1 bp or (and) 5 bp occurred, respectively, which caused frame shift mutations. The contents of chlorophylls and carotenoids were significantly decreased in the albino mutants as compared to wild type, and the expression levels of RhPDS1 were also decreased in the albino mutants. Taken together, the RhPDS1 gene was cloned and knocked out by using CRISPR/Cas9 method, which laid down the foundations for functional genomics studies and de novo domestication of R. henryi.

[an error occurred while processing this directive]

参考文献

[1] 郭丽, 王雪涵, 田丰 (2023). 多组学整合网络: 一把精准解码玉米功能基因组的钥匙. 植物学报 58, 1-5.
[2] 何晓玲, 刘鹏程, 马伯军, 陈析丰 (2022). 基于CRISPR/ Cas9的基因编辑技术研究进展及其在植物中的应用. 植物学报 57, 508-531.
[3] 彭华胜, 徐长青, 袁媛, 查良平, 陈焕文, 管理, 康利平, 杨军, 王亚君, 曹丽娟, 程京, 黄璐琦 (2019). 最早的中药辅料炮制品: 西汉海昏侯墓出土的木质漆盒内样品鉴定与分析. 科学通报 64, 935-947.
[4] 王丹, 王谧, 刘军, 周晓慧, 刘松瑜, 杨艳, 庄勇 (2022). 茄子U6启动子克隆及CRISPR/Cas9介导的基因编辑体系建立. 园艺学报 49, 791-800.
[5] 吴琼, 孙超, 陈士林, 罗红梅, 李滢, 孙永珍, 牛云云 (2010). 转录组学在药用植物研究中的应用. 世界科学技术(中医药现代化) 12, 457-462.
[6] 周婕 (2019). 湖北地黄化学成分研究. 硕士论文. 北京: 北京协和医学院. pp. 32-102.
[7] 左鑫, 李铭铭, 李欣容, 苗春妍, 李炎枋, 杨旭, 张重义, 王丰青 (2022). CRISPR/Cas9技术在天目地黄RcPDS1基因编辑中的应用. 园艺学报 49, 1532-1544.
[8] Alagoz Y, Gurkok T, Zhang BH, Unver T (2016). Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in Opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6, 30910.
[9] Banakar R, Schubert M, Collingwood M, Vakulskas C, Eggenberger AL, Wang K (2020). Comparison of CRISPR-Cas9/Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice phytoene desaturase (OsPDS) gene. Rice 13, 4.
[10] Bánfalvi Z, Csákvári E, Villányi V, Kondrák M (2020). Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation. BMC Biotechnol 20, 25.
[11] Cheng JY, Hill C, Han Y, He TH, Ye XG, Shabala S, Guo GG, Zhou MX, Wang K, Li CD (2023). New semi-dwarfing alleles with increased coleoptile length by gene editing of gibberellin 3-oxidase 1 using CRISPR-Cas9 in barley (Hordeum vulgare L.). Plant Biotechnol J 21, 806-818.
[12] Kaur N, Alok A, Shivani, Kaur N, Pandey P, Awasthi P, Tiwari S (2018). CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genomics 18, 89-99.
[13] Koschmieder J, Fehling-Kaschek M, Schaub P, Ghisla S, Brausemann A, Timmer J, Beyer P (2017). Plant-type phytoene desaturase: functional evaluation of structural implications. PLoS One 12, e0187628.
[14] Kui L, Chen HT, Zhang WX, He SM, Xiong ZJ, Zhang YS, Yan L, Zhong CF, He FM, Chen JW, Zeng P, Zhang GH, Yang SC, Dong Y, Wang W, Cai J (2017). Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front Plant Sci 7, 2036.
[15] Li TD, Yang XP, Yu Y, Si XM, Zhai XW, Zhang HW, Dong WX, Gao CX, Xu C (2018). Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36, 1160-1163.
[16] Li XR, Zuo X, Li MM, Yang X, Zhi JY, Sun HZ, Xie CX, Zhang ZY, Wang FQ (2021). Efficient CRISPR/Cas9- mediated genome editing in Rehmannia glutinosa. Plant Cell Rep 40, 1695-1707.
[17] Ma CF, Liu MC, Li QF, Si J, Ren XS, Song HY (2019). Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Hortic Plant J 5, 164-169.
[18] Ma LG, Dong CM, Song C, Wang XL, Zheng XK, Niu Y, Chen SL, Feng WS (2021). De novo genome assembly of the potent medicinal plant Rehmannia glutinosa using nanopore technology. Comput Struct Biotechnol J 19, 3954-3963.
[19] Mao YF, Zhang ZJ, Feng ZY, Wei PL, Zhang H, Botella JR, Zhu JK (2016). Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14, 519-532.
[20] Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017). Efficient CRISPR/Cas9 genome editing of Phytoene desaturase in cassava. Front Plant Sci 8, 1780.
[21] Qin GJ, Gu HY, Ma LG, Peng YB, Deng XW, Chen ZL, Qu LJ (2007). Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17, 471-482.
[22] Ren C, Liu YF, Guo YC, Duan W, Fan PG, Li SH, Liang ZC (2021). Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Hortic Res 8, 52.
[23] Schmittgen TD, Livak KJ (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3, 1101-1108.
[24] Son S, Park SR (2022). Challenges facing CRISPR/Cas9- based genome editing in plants. Front Plant Sci 13, 902413.
[25] Wang FQ, Li XR, Zuo X, Li MM, Miao CY, Zhi JY, Li YJ, Yang X, Liu XY, Xie CX (2021). Transcriptome-wide identification of WRKY transcription factor and functional characterization of RgWRKY37 involved in acteoside biosynthesis in Rehmannia glutinosa. Front Plant Sci 12, 739853.
[26] Wang J, Wu HT, Chen YN, Yin TM (2020). Efficient CRISPR/Cas9-mediated gene editing in an interspecific hybrid poplar with a highly heterozygous genome. Front Plant Sci 11, 996.
[27] Wilson FM, Harrison K, Armitage AD, Simkin AJ, Harrison RJ (2019). CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods 15, 45.
[28] Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14, 327.
[29] Xu ZS, Feng K, Xiong AS (2019). CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Mol Biotechnol 61, 191-199.
[30] Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Gao CX, Liang CZ, Li JY (2021). A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
[31] Zhang YX, Malzahn AA, Sretenovic S, Qi YP (2019). The emerging and uncultivated potential of CRISPR technology in plant science. Nat Plants 5, 778-794.
[32] Zhang YX, Xu GC, Cheng CH, Lei L, Sun J, Xu Y, Deng CH, Dai ZG, Yang ZM, Chen XJ, Liu C, Tang Q, Su JG (2021). Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in hemp (Cannabis sativa L.). Plant Biotechnol J 19, 1979-1987.
[33] Zhou J, Shi GR, Liu YF, Chen RY, Yu DQ (2019). Nine new compounds from the whole plants of Rehmannia henryi. J Asian Nat Prod Res 21, 399-408.
[34] Zhou Z, Tan HX, Li Q, Chen JF, Gao SH, Wang Y, Chen WS, Zhang L (2018). CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry 148, 63-70.
[35] Zs?g?n A, ?ermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018). De novo domestication of wild tomato using genome editing. Nat Biotechnol 36, 1211-1216.
[36] Zuo X, Wang FQ, Li XR, Li MM (2020). Transcriptome- based screening and the optimal reference genes for real-time quantitative PCR in Rehmannia chingii and R. henryi. Biol Plant 64, 798-806.
文章导航

/

[an error occurred while processing this directive]