[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
·评述· 饲草生物学专辑

黄河三角洲滨海草带建设的饲草基础生物学问题

展开
  • 1东营市湿地城市建设推进中心, 东营 257091
    2中国科学院武汉植物园, 武汉 430074
    3中国科学院植物研究所, 北京 100093
    4山东省林业科学院, 济南 250014
    5山东师范大学东营研究院, 东营 257000
    6中国科学院植物研究所生态草牧业工程实验室, 北京 100093

收稿日期: 2022-07-24

  录用日期: 2022-11-15

  网络出版日期: 2022-11-15

基金资助

山东省重点研发计划(重大科技创新工程)(2021SFG0303);“一带一路”国际科学组织联盟资助(ANSO-SBA-2022-03);中国科学院A类战略性先导科技专项(XDA26050000);黄河三角洲土地利用安全野外科学观测站课题(YWZ2022-06)

Basic Biology of Forage Grass for Constructing Coastal Grass Belt in Yellow River Delta

Expand
  • 1Dongying Promotion Center for Wetland City Construction, Dongying 257091, China
    2Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
    3Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    4Shandong Forestry Research Institute, Jinan 250014, China
    5Dongying Institute, Shandong Normal University, Dongying 257000, China
    6Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Received date: 2022-07-24

  Accepted date: 2022-11-15

  Online published: 2022-11-15

摘要

根据滨海盐碱地区土壤盐渍化程度开展人工种草, 建设滨海草带, 发展盐碱地生态草牧业, 可解决草粮争地的矛盾, 服务国家大粮食安全。该文综述了黄河三角洲地区饲草轮作、稻麦轮作及林草间作等盐碱地滨海草带示范栽培模式, 讨论了滨海草带耐盐机制、耦合高产优异生产性状分子模块育种及饲草高附加值产业发展等方面的基础生物学问题, 并给出解决策略和实现路径。

本文引用格式

王甜甜, 曹丽雯, 刘智全, 杨庆山, 陈良, 陈敏, 景海春 . 黄河三角洲滨海草带建设的饲草基础生物学问题[J]. 植物学报, 2022 , 57(6) : 837 -847 . DOI: 10.11983/CBB22165

Abstract

Coastal grass belt refers to the development of grass/forage farming systems according to the gradient of salinity along the coastal line, which could help develop grass-based livestock husbandry on saline soil and contribute to food security in China. This review summarizes several successful forage cultivation models in Yellow River Delta, including the forages rotation, rice-triticale/oat rotation, and forest-grass intercropping. We also discussed the biological question that are related to the understanding of the molecular mechanisms of salt tolerance, dissection of molecular modules balancing stress tolerance and biomass production, and development of value-added products of forage grasses. The resolution strategy and realization way of these biological question were summarized.

[an error occurred while processing this directive]

参考文献

[1] 杜友 (2014). 管花肉苁蓉产量形成和物质分配的调控研究. 博士论文. 北京: 中国农业大学. pp. 36-50.
[2] 傅庆林, 朱芸, 郭彬, 刘琛, 林义成, 裘高扬, 李华 (2022). 稻麦轮作对滨海盐土土壤肥力的影响. 浙江农业科学 63, 1135-1138.
[3] 荷斯坦 (2022). 进口苜蓿: 2021全年178万吨+31%. http://www.dairyfarmer.com.cn/nnyw_xjxm/2022-01-26/405164.chtml. 2022-01-26.
[4] 侯瑞星, 欧阳竹, 刘振, 来剑斌, 孙志刚, 李永华, 李宏伟, 李振声, 李静 (2021). 环渤海“滨海草带”建设与生态草牧业发展路径. 中国科学院院刊 36, 652-659.
[5] 金京波, 王台, 程佑发, 王雷, 张景昱, 景海春, 种康 (2021). 我国牧草育种现状与展望. 中国科学院院刊 36, 660-665.
[6] 景海春, 田志喜, 种康, 李家洋 (2021). 分子设计育种的科技问题及其展望概论. 中国科学: 生命科学 51, 1356-1365.
[7] 李宏伟, 郑琪, 李滨, 赵茂林, 李振声 (2022). 一种耐盐碱牧草——长穗偃麦草研究进展. 草业学报 31(5), 190-199.
[8] 吕会刚, 康俊梅, 龙瑞才, 徐化凌, 陈小芳, 杨青川, 张铁军 (2019). 播种量和行距配置对盐碱地紫花苜蓿草产量及品质的影响. 草业学报 28(3), 164-174.
[9] 毛培胜, 王明亚, 欧成明 (2018). 中国草种业的发展现状与趋势分析. 草学 (6), 1-6.
[10] 南志标, 王彦荣, 贺金生, 胡小文, 刘志鹏, 李春杰, 聂斌, 夏超 (2022). 我国草种业的成就、挑战与展望. 草业学报 31(6), 1-10.
[11] 潘琰, 龚吉蕊, 宝音陶格涛, 罗亲普, 翟占伟, 徐沙, 王忆慧, 刘敏, 杨丽丽 (2017). 季节放牧下内蒙古温带草原羊草根茎叶功能性状的权衡. 植物学报 52, 307-321.
[12] 宋香静 (2018). 黄河三角洲湿地不同盐分条件对柽柳根系的影响. 硕士论文. 北京: 中国林业科学研究院. pp. 45-55.
[13] 王殿, 袁芳, 王宝山, 陈敏 (2012). 能源植物杂交狼尾草对NaCl胁迫的响应及其耐盐阈值. 植物生态学报 36, 572-577.
[14] 王淑彬, 黄国勤, 李年龙, 刘隆旺 (2002). 稻田水旱轮作(第3年度)的土壤微生物效应. 江西农业大学学报(自然科学版) 24, 320-323.
[15] 谢华玲, 杨艳萍, 董瑜, 王台 (2021). 苜蓿国际发展态势分析. 植物学报 56, 740-750.
[16] 胥伟华, 王建林, 刘小京, 谢旗, 杨维才, 曹晓风, 李振声 (2022). 建设“滨海草带”的科技缘由、内容与对策. 中国科学院院刊 37, 238-245.
[17] 薛勇彪, 韩斌, 种康, 王台, 何祖华, 傅向东, 储成才, 程祝宽, 徐云远, 李明 (2018). 水稻分子模块设计研究成果与展望. 中国科学院院刊 33, 900-908.
[18] 杨国涛, 郭玉海, 杜友, 崔旭盛, 翟志席 (2010). 干旱胁迫对柽柳-肉苁蓉碳水化合物分配及有效成分含量的影响. 安徽农业科学 38, 14246-14247, 14249.
[19] 杨玉海, 蒋平安, 艾尔肯, 周抑强 (2005). 种植苜蓿对土壤肥力的影响. 干旱区地理 28, 248-251.
[20] 张欢欢, 马东方, 柏新富, 朱建军 (2013). 玉米幼苗对NaCl胁迫的生理响应和耐受阈值分析. 鲁东大学学报(自然科学版) 29, 324-329.
[21] 张静昆, 曾鹏, 余泓, 孟祥兵, 李家洋 (2021). 多倍体水稻从头驯化: 育种策略与展望. 中国科学: 生命科学 51, 1467-1476.
[22] 张凯 (2019). 裸燕麦落粒性相关AnQ基因的克隆和表达特性研究. 硕士论文. 呼和浩特: 内蒙古农业大学. pp. 8-12.
[23] 朱子超, 王楚桃, 何永歆, 蒋刚, 欧阳杰, 黄乾龙, 李贤勇 (2014). 水稻落粒性的遗传分析和基因定位. 杂交水稻 29, 62-66.
[24] Brito Neto JFD, Pereira WE, Cavalcanti LF, Araújo RDC, Soares EBDS, Lacerda JSD (2010). Effect of green and organic fertilization on the development of papaya tree and chemical characteristics of soil. Eng Sanit Ambient 7, 159-168.
[25] Chen M, Yang Z, Liu J, Zhu TT, Wei XC, Fan H, Wang BS (2018). Adaptation mechanism of salt excluders under saline conditions and its applications. Int J Mol Sci 19, 3668.
[26] Ding TL, Yang Z, Wei XC, Yuan F, Yin SS, Wang BS (2018). Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage. Funct Plant Biol 45, 1073-1081.
[27] Economic Research Service, U.S. Department of Agriculture (2021). USDA agricultural projections to 2030. http://ers.usda.gov/publications/pub-details/?pubid=100525. 2021-02-23.
[28] Hao Y, Lal R, Owens LB, Izaurralde RC, Post WM, Hothem DL (2002). Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds. Soil Till Res 68, 133-142.
[29] Hardarson G, Atkins C (2003). Optimising biological N2 fixation by legumes in farming systems. Plant Soil 252, 41-54.
[30] Lal R (2001). World cropland soils as a source or sink for atmospheric carbon. Adv Agron 71, 145-191.
[31] Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2005). Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil 271, 175-187.
[32] Sanginga N (2003). Role of biological nitrogen fixation in legume based cropping systems: a case study of West Africa farming systems. Plant Soil 252, 25-39.
[33] Wu H, Guo JR, Wang CF, Li KL, Zhang XW, Yang Z, Li MT, Wang BS (2019). An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Front Plant Sci 10, 530.
[34] Yang XJ, Gómez-Aparicio L, Lortie CJ, Verdú M, Cavieres LA, Huang ZY, Gao RR, Liu R, Zhao YL, Cornelissen JHC (2022). Net plant interactions are highly variable and weakly dependent on climate at the global scale. Ecol Lett 25, 1580-1593.
[35] Yuan F, Leng BY, Wang BS (2016). Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci 7, 977.
文章导航

/

[an error occurred while processing this directive]