[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
专题论坛

硝酸盐转运蛋白NRT2在植物中的功能及分子机制研究进展

展开
  • 1.华中农业大学作物遗传改良国家重点实验室, 武汉 430070
    2.西北农林科技大学农学院, 杨凌 712100
第一联系人:

† 共同第一作者。

收稿日期: 2022-06-28

  录用日期: 2022-10-24

  网络出版日期: 2022-11-02

基金资助

湖北省自然科学基金(2022CFB172);国家重点研发计划(2021YFF1000500)

Research Advances in Elucidating the Function and Molecular Mechanism of the Nitrate Transporter 2 (NRT2) Proteins in Plants

Expand
  • 1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
    2. College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China
First author contact:

† These authors contributed equally to this paper.

Received date: 2022-06-28

  Accepted date: 2022-10-24

  Online published: 2022-11-02

摘要

氮素作为植物生长发育所需的大量元素, 对植物生长发育及作物产量具有重要作用。施入氮肥是植物及作物的主要氮素来源。面对当下过度施肥造成面源污染加剧的现状, 提高作物氮素利用效率, 实现“减肥增产”的绿色增产增效模式, 是促进我国农业可持续发展及保障国家粮食安全的重要措施。当土壤氮匮缺时, 硝酸盐转运蛋白NRT2家族成员对根系吸收及转运硝酸盐至关重要, 其中NRT2.1在植物缺氮时主要负责根部的硝酸根吸收。该文重点总结了模式植物拟南芥(Arabidopsis thaliana)及重要粮油作物中NRT2家族蛋白特别是NRT2.1的功能及调控机理研究进展, 旨在为后续挖掘NRT2在提高作物产量方面的潜力及分子调控机制研究提供重要依据。

本文引用格式

黄慧梅, 高永康, 台玉莹, 刘超, 曲德杰, 汤锐恒, 王幼宁 . 硝酸盐转运蛋白NRT2在植物中的功能及分子机制研究进展[J]. 植物学报, 2023 , 58(5) : 783 -798 . DOI: 10.11983/CBB22134

Abstract

Nitrogen, the essential macronutrient in plants, plays a critical role in regulating plant growth and development, especially for crops production. To gain high crop yield, a large amount N fertilizer is usually applied to the planting field. However, the excessive use of chemical fertilizers has aggravated the agricultural non-point source pollution (NSP). Increasing crop yield under reduced fertilizer consumption can be achieved by increasing nitrogen use efficiency (NUE), which is crucial for promoting sustainable agriculture and for achieving agriculture and food security. In response to nitrogen-deficiency condition under natural environments, high-affinity nitrate transporter 2 (NRT2) proteins have evolved in plants. Among them, NRT2.1 subfamily acts as the main component of nitrate uptake in roots under conditions of nitrate deficiency. Here we summarize the latest progresses of the function and molecular mechanism of the NRT2 proteins, particularly of the NRT2.1 subfamily in Arabidopsis and several important crops and discuss the future directions of NRT2 research. This review aims to provide an important basis for the subsequent exploration of the potential of NRT2 proteins in increasing crop yield and the underlying molecular mechanisms.

[an error occurred while processing this directive]

参考文献

[1] 陈景光 (2017). OsNAR2.1参与水稻氮素利用的生物学功能及其机制研究. 博士论文. 南京: 南京农业大学. pp. 1-213.
[2] 陈景光, 张勇, 谭雅文, 徐国华, 范晓荣 (2016). 过量表达OsNRT2.1对水稻日本晴生长和氮素利用效率的影响. 分子植物育种 14, 1-9.
[3] 李宝珍, 范晓荣, 徐国华 (2009). 植物吸收利用铵态氮和硝态氮的分子调控. 植物生理学通讯 45, 80-88.
[4] 李纯, 孙春玉, 陈静, 林彦萍, 王义, 张美萍 (2018). 主要协同转运蛋白超家族的研究进展. 生物技术通报 34(8), 43-49.
[5] 陆海燕, 李胜元, 唐仲, 徐国华, 范晓荣 (2015). 超表达OsNRT2.3b促进水稻武育粳7号生长和提高籽粒产量. 分子植物育种 13, 497-504.
[6] 王孝林, 王二涛 (2019). 根际微生物促进水稻氮利用的机制. 植物学报 54, 285-287.
[7] Alvarez JM, Riveras E, Vidal EA, Gras DE, Contreras- López O, Tamayo KP, Aceituno F, Gómez I, Ruffel S, Lejay L, Jordana X, Gutiérrez RA (2014). Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots. Plant J 80, 1-13.
[8] Cerezo M, Tillard P, Filleur S, Mu?os S, Daniel-Vedele F, Gojon A (2001). Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127, 262-271.
[9] Chen JG, Liu XQ, Liu SH, Fan XR, Zhao LM, Song MQ, Fan XR, Xu GH (2020). Co-overexpression of OsNAR2.1 and OsNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants. Front Plant Sci 11, 1245.
[10] Chen JG, Zhang Y, Tan YW, Zhang M, Zhu LL, Xu GH, Fan XR (2016a). Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotech J 14, 1705-1715.
[11] Chen XB, Yao QF, Gao XH, Jiang CF, Harberd NP, Fu XD (2016b). Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26, 640-646.
[12] Chopin F, Orsel M, Dorbe MF, Chardon F, Truong HN, Miller AJ, Krapp A, Daniel-Vedele F (2007). The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19, 1590-1602.
[13] Cooper HD, Clarkson DT (1989). Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals—a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J Exp Bot 40, 753-762.
[14] Dechorgnat J, Francis KL, Dhugga KS, Rafalski JA, Tyerman SD, Kaiser BN (2019). Tissue and nitrogen- linked expression profiles of ammonium and nitrate transporters in maize. BMC Plant Biol 19, 206.
[15] Dechorgnat J, Patrit O, Krapp A, Fagard M, Daniel-Vedele F (2012). Characterization of the Nrt2.6 gene in Arabidopsis thaliana: a link with plant response to biotic and abiotic stress. PLoS One 7, e42491.
[16] Fan XR, Naz M, Fan XR, Xuan W, Miller AJ, Xu GH (2017). Plant nitrate transporters: from gene function to application. J Exp Bot 68, 2463-2475.
[17] Fan XR, Tang Z, Tan YW, Zhang Y, Luo BB, Yang M, Lian XM, Shen QR, Miller AJ, Xu GH (2016). Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA 113, 7118-7123.
[18] Feng HM, Li B, Zhi Y, Chen JG, Li R, Xia XD, Xu GH, Fan XR (2017). Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and tran- slocation. Plant Cell Rep 36, 1287-1296.
[19] Feng HM, Yan M, Fan XR, Li BZ, Shen QR, Miller AJ, Xu GH (2011). Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62, 2319-2332.
[20] Filleur S, Daniel-Vedele F (1999). Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 207, 461-469.
[21] Forde BG (2000). Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465, 219-235.
[22] Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013). The global nitrogen cycle in the twenty-first century. Phil Trans R Soc B 368, 20130164.
[23] Fujita K, Sato H, Sawada O, Sendo S (1995). Husk leaves contribution to dry matter and grain production as well as N distribution in flint corn (Zea mays L.) genotypes differing in husk leaf area. Soil Sci Plant Nutr 41, 587-596.
[24] Galván A, Quesada A, Fernández E (1996). Nitrate and nitrite are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii. J Biol Chem 271, 2088-2092.
[25] Guan PZ, Wang RC, Nacry P, Breton G, Kay SA, Pruneda-Paz JL, Davani A, Crawford NM (2014). Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc Natl Acad Sci USA 111, 15267-15272.
[26] Hachiya T, Sakakibara H (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J Exp Bot 68, 2501-2512.
[27] Ho CH, Lin SH, Hu HC, Tsay YF (2009). CHL1 functions as a nitrate sensor in plants. Cell 138, 1184-1194.
[28] Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47, 834-838.
[29] Ishikawa S, Ito Y, Sato Y, Fukaya Y, Takahashi M, Morikawa H, Ohtake N, Ohyama T, Sueyoshi K (2009). Two- component high-affinity nitrate transport system in barley: membrane localization, protein expression in roots and a direct protein-protein interaction. Plant Biotechnol 26, 197-205.
[30] Jacquot A, Chaput V, Mauries A, Li Z, Tillard P, Fizames C, Bonillo P, Bellegarde F, Laugier E, Santoni V, Hem S, Martin A, Gojon A, Schulze W, Lejay L (2020). NRT2.1 C-terminus phosphorylation prevents root high affinity nitrate uptake activity in Arabidopsis thaliana. New Phytol 228, 1038-1054.
[31] Katayama H, Mori M, Kawamura Y, Tanaka T, Mori M, Hasegawa H (2009). Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breed Sci 59, 237-243.
[32] Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A (2012). The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24, 245-258.
[33] Konishi M, Yanagisawa S (2013). Arabidopsis NIN-like transcription factors have a central role in nitrate signaling. Nat Commun 4, 1617.
[34] Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN, Glass ADM (2012). Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytol 194, 724-731.
[35] Laugier E, Bouguyon E, Mauriès A, Tillard P, Gojon A, Lejay L (2012). Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 tran-sport system. Plant Physiol 158, 1067-1078.
[36] Leghari SJ, Wahocho NA, Laghari GM, Laghari AH, Bhabhan GM, Talpur KH, Bhutto TA, Wahocho SA, Lashari AA (2016). Role of nitrogen for plant growth and development: a review. Adv Environ Biol 10, 209-218.
[37] Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, Daniel- Vedele F, Gojon A (1999). Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J 18, 509-519.
[38] Lezhneva L, Kiba T, Feria-Bourrellier AB, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel- Vedele F, Krapp A (2014). The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J 80, 230-241.
[39] Li GW, Tillard P, Gojon A, Maurel C (2016). Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1. Plant Cell Physiol 57, 733-742.
[40] Li WB, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007). Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143, 425-433.
[41] Li Z, Wu XN, Jaquot A, Lejay L, Schulze WX (2020). A phospho-switch in the N-terminus of NRT2.1 affects nitrate uptake by controlling the interaction of NRT2.1 with NAR2.1.bioRxiv https://doi.org/10.1101/2020.01.08.898254
[42] Little DY, Rao HY, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA 102, 13693-13698.
[43] Liu XQ, Huang DM, Tao JY, Miller AJ, Fan XR, Xu GH (2014). Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two- component system for high-affinity nitrate transport. New Phytol 204, 74-80.
[44] Luo BB, Chen JG, Zhu LL, Liu SH, Li B, Lu H, Ye GY, Xu GH, Fan XR (2018). Overexpression of a high-affinity nitrate transporter OsNRT2.1 increases yield and manganese accumulation in rice under alternating wet and dry condition. Front Plant Sci 9, 1192.
[45] Luo L, Zhang YL, Xu GH (2020). How does nitrogen shape plant architecture? J Exp Bot 71, 4415-4427.
[46] Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N, Kurai T, Ueda Y, Sakakibara H, Yanagisawa S (2018). A NIGT1-centred transcriptional cascade regulates nitrate signaling and incorporates phosphorus starvation signals in Arabidopsis. Nat Commun 9, 1376.
[47] Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A (2013). Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4, 1713.
[48] Medici A, Krouk G (2014). The primary nitrate response: a multifaceted signaling pathway. J Exp Bot 65, 5567-5576.
[49] Menz J, Li Z, Schulze WX, Ludewig U (2016). Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. Plant J 88, 717-734.
[50] Misawa F, Ito M, Nosaki S, Nishida H, Watanabe M, Suzuki T, Miura K, Kawaguchi M, Suzaki T (2022). Nitrate transport via NRT2.1 mediates NIN-LIKE PROTEIN-de- pendent suppression of root nodulation in Lotus japonicus. Plant Cell 34, 1844-1862.
[51] N?sholm T, Kielland K, Ganeteg U (2009). Uptake of organic nitrogen by plants. New Phytol 182, 31-48.
[52] Naz M, Luo BB, Guo XY, Li B, Chen JG, Fan XR (2019). Overexpression of nitrate transporter OsNRT2.1 enhances nitrate-dependent root elongation. Genes 10, 290.
[53] Ohkubo Y, Kuwata K, Matsubayashi Y (2021). A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1. Nat Plants 7, 310-316.
[54] Okamoto M, Kumar A, Li WB, Wang Y, Siddiqi MY, Crawford NM, Glass ADM (2006). High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140, 1036-1046.
[55] Okamoto M, Vidmar JJ, Glass ADM (2003). Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44, 304-317.
[56] Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel- Vedele F, Miller AJ (2006). Characterization of a two- component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol 142, 1304-1317.
[57] Orsel M, Eulenburg K, Krapp A, Daniel-Vedele F (2004). Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta 219, 714-721.
[58] Orsel M, Krapp A, Daniel-Vedele F (2002). Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol 129, 886-896.
[59] Pao SS, Paulsen IT, Saier MH Jr (1998). Major facilitator superfamily. Microbiol Mol Biol Rev 62, 1-34.
[60] Plett D, Toubia J, Garnett T, Tester M, Kaiser BN, Baumann U (2010). Dichotomy in the NRT gene families of dicots and grass species. PLoS One 5, e15289.
[61] Quesada A, Galvan A, Fernandez E (1994). Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J 5, 407-419.
[62] Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006). A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140, 909-921.
[63] Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009). Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21, 3567-3584.
[64] Sabermanesh K, Holtham LR, George J, Roessner U, Boughton BA, Heuer S, Tester M, Plett DC, Garnett TP (2017). Transition from a maternal to external nitrogen source in maize seedlings. J Integr Plant Biol 59, 261-274.
[65] Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M (1997). Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9, 783-798.
[66] Tang Z, Fan XR, Li Q, Feng HM, Miller AJ, Shen QR, Xu GH (2012). Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160, 2052-2063.
[67] Tong YP, Zhou JJ, Li ZS, Miller AJ (2005). A two-component high-affinity nitrate uptake system in barley. Plant J 41, 442-450.
[68] Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S (2008). Expression of two maize putative nitrate transporters in response to nitrate and sugar availability. Plant Biol 10, 462-475.
[69] Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007). Nitrate transporters and peptide transporters. FEBS Lett 581, 2290-2300.
[70] Unkles SE, Hawker KL, Grieve C, Campbell EI, Montague P, Kinghorn JR (1991). crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci USA 88, 204-208.
[71] Valkov VT, Sol S, Rogato A, Chiurazzi M (2020). The functional characterization of LjNRT2.4 indicates a novel, positive role of nitrate for an efficient nodule N2-fixation activity. New Phytol 228, 682-696.
[72] Vidmar JJ, Zhuo DG, Siddiqi MY, Glass ADM (2000). Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoding high-affinity nitrate transporters from roots of barley. Plant Physiol 122, 783-792.
[73] Wang YY, Cheng YH, Chen KE, Tsay YF (2018). Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 69, 85-122.
[74] Wang YY, Hsu PK, Tsay YF (2012). Uptake, allocation and signaling of nitrate. Trends Plant Sci 17, 458-467.
[75] Wei J, Zheng Y, Feng HM, Qu HY, Fan XR, Yamaji N, Ma JF, Xu GH (2018). OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. J Exp Bot 69, 1095-1107.
[76] Widiez T, El Kafafi ES, Girin T, Berr A, Ruffel S, Krouk G, Vayssières A, Shen WH, Coruzzi GM, Gojon A, Lepetit M (2011). High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3- uptake is associated with changes in histone methylation. Proc Natl Acad Sci USA 108, 13329-13334.
[77] Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A (2007). Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 282, 23541-23552.
[78] Yan M, Fan XR, Feng HM, Miller AJ, Shen QR, Xu GH (2011). Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT- 2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34, 1360-1372.
[79] Yong ZH, Kotur Z, Glass ADM (2010). Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J 63, 739-748.
[80] Yu LH, Wu J, Tang H, Yuan Y, Wang SM, Wang YP, Zhu QS, Li SG, Xiang CB (2016). Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Sci Rep 6, 27795.
[81] Zhang HM, Forde BG (2000). Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51, 51-59.
[82] Zhang JY, Liu YX, Zhang N, Hu B, Jin T, Xu HR, Qin Y, Yan PX, Zhang XN, Guo XX, Hui J, Cao SY, Wang X, Wang C, Wang H, Qu BY, Fan GY, Yuan LX, Garrido-Oter R, Chu CC, Bai Y (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37, 676-684.
[83] Zhang SN, Zhang YY, Li KN, Yan M, Zhang JF, Yu M, Tang S, Wang LY, Qu HY, Luo L, Xuan W, Xu GH (2021). Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice. Curr Biol 31, 671-683.
[84] Zhou JJ, Fernández E, Galván A, Miller AJ (2000). A high affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Lett 466, 225-227.
[85] Zhuo DG, Okamoto M, Vidmar JJ, Glass ADM (1999). Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J 17, 563-568.
[86] Zou X, Liu MY, Wu WH, Wang Y (2020). Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2.1 in response to nitrate limitation. J Integr Plant Biol 62, 865-876.
文章导航

/

[an error occurred while processing this directive]