[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]红光和远红光在调控植物生长发育及应答非生物胁迫中的作用
收稿日期: 2022-04-24
录用日期: 2022-08-24
网络出版日期: 2022-08-30
基金资助
国家自然科学基金(32122081);国家自然科学基金(32272698);国家重点研发计划(2019YFD1000300);国家重点研发计划(2018YFD1000800);辽宁省优秀青年科学基金(2022-YQ-18);沈阳市中青年科技创新人才支持计划(RC200449);现代农业产业技术体系专项(CARS-23)
Red and Far-red Light Regulation of Plant Growth, Development, and Abiotic Stress Responses
Received date: 2022-04-24
Accepted date: 2022-08-24
Online published: 2022-08-30
许亚楠, 闫家榕, 孙鑫, 王晓梅, 刘玉凤, 孙周平, 齐明芳, 李天来, 王峰 . 红光和远红光在调控植物生长发育及应答非生物胁迫中的作用[J]. 植物学报, 2023 , 58(4) : 622 -637 . DOI: 10.11983/CBB22087
As an important environmental factor, light not only provides energy for plant photosynthesis, but also acts as a signal to regulate plant growth and development. Here, we summarize the regulatory effects of red light and far-red light on plant growth and development and abiotic stress responses. This review focuses on the mechanism of phytochrome and light signaling factor regulation of seed germination, hypocotyl growth, bud development, and flowering in plants through integration with endogenous signal transduction, such as hormones. In addition, the regulatory mechanisms of red light and far-red light on plant responses to salt, drought and temperature stress were elucidated. It is expected that on the basis of exploring the mechanism of plant’ perception and response to the light environment, we can accurately supplement light for crops to improve crop yield, quality and stress resistance by using LED spectrum technology while promoting the goal of “dual carbon” to reduce energy consumption and environmental pollution.
Key words:
red light; far-red light; phytochrome; plant growth and development;
参考文献
[1] 景艳军, 林荣呈 (2017). 我国植物光信号转导研究进展概述. 植物学报 52, 257-270. [2] 马朝峰, 戴思兰 (2019). 光受体介导信号转导调控植物开花研究进展. 植物学报 54, 9-22. [3] 任桂萍, 王小菁, 朱根发 (2016). 不同光质的LED对蝴蝶兰组织培养增殖及生根的影响. 植物学报 51, 81-88. [4] 王峰 (2017). PhyA、HY5和PIF4在光质调控番茄低温抗性中的机制研究. 博士论文. 杭州: 浙江大学. pp. 1-163. [5] 王峰, 王秀杰, 赵胜男, 闫家榕, 卜鑫, 张颖, 刘玉凤, 许涛, 齐明芳, 齐红岩, 李天来 (2020). 光对园艺植物花青素生物合成的调控作用. 中国农业科学 53, 4904-4917. [6] 王峰, 闫家榕, 陈雪玉, 姜程浩, 孟思达, 刘玉凤, 许涛, 齐明芳, 李天来 (2019). 光调控植物叶绿素生物合成的研究进展. 园艺学报 46, 975-994. [7] Abbas N, Maurya JP, Senapati D, Gangappa SN, Chattopadhyay S (2014). Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. Plant Cell 26, 1036-1052. [8] ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003). Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51, 363-372. [9] Amasino RM, Michaels SD (2010). The timing of flowering. Plant Physiol 154, 516-520. [10] Arana MV, Sánchez-Lamas M, Strasser B, Ibarra SE, Cerdán PD, Botto JF, Sánchez RA (2014). Functional diversity of phytochrome family in the control of light and gibberellin-mediated germination in Arabidopsis. Plant Cell Environ 37, 2014-2023. [11] Arico D, Legris M, Castro L, Garcia CF, Laino A, Casal JJ, Mazzella MA (2019). Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant Cell Environ 42, 2554-2566. [12] Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14, 810-817. [13] Barros-Galv?o T, Dave A, Gilday AD, Harvey D, Vaistij FE, Graham IA (2020). ABA INSENSITIVE4 promotes rather than represses PHYA-dependent seed germination in Arabidopsis thaliana. New Phytol 226, 953-956. [14] Bernardo-García S, De Lucas M, Martínez C, Espinosa- Ruiz A, Davière JM, Prat S (2014). BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28, 1681-1694. [15] Bu X, Wang XJ, Yan JR, Zhang Y, Zhou SY, Sun X, Yang YX, Ahammed GJ, Liu YF, Qi MF, Wang F, Li TL (2021). Genome-wide characterization of B-box gene family and its roles in responses to light quality and cold stress in tomato. Front Plant Sci 12, 698525. [16] Cao K, Yu J, Xu DW, Ai KQ, Bao EC, Zou ZR (2018). Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. BMC Plant Biol 18, 92. [17] Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007). Canopy shade causes a rapid and transient arrest in leaf development through auxin- induced cytokinin oxidase activity. Genes Dev 21, 1863-1868. [18] Casal JJ (2013). Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64, 403-427. [19] Casal JJ, Balasubramanian S (2019). Thermomorphogenesis. Annu Rev Plant Biol 70, 321-346. [20] Catalá R, Medina J, Salinas J (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci USA 108, 16475-16480. [21] Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10, 673-683. [22] Chen HD, Huang X, Gusmaroli G, Terzaghi W, Lau OS, Yanagawa Y, Zhang Y, Li JG, Lee JH, Zhu DM, Deng XW (2010). Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR of PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 22, 108-123. [23] Chen XJ, Xia XJ, Guo X, Zhou YH, Shi K, Zhou J, Yu JQ (2016). Apoplastic H2O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants. New Phytol 211, 1266-1278. [24] Cheng MC, Kathare PK, Paik I, Huq E (2021). Phytochrome signaling networks. Annu Rev Plant Biol 72, 217-244. [25] Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B, Noh YS (2012). Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell 22, 736-748. [26] Cordeiro AM, Figueiredo ass="magtech_ref_source"> Cordeiro AM, Figueiredo DD, Tepperman J, Borba AR, Louren?o T, Abreu IA, Ouwerkerk PBF, Quail PH, Oliveira MM, Saibo NJM (2016). Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B. Biochim Biophys Acta 1859, 393-404. [27] de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-484. [28] de Lucas M, Prat S (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol 202, 1126-1141. [29] Delker C, Sonntag L, James GV, Janitza P, Iba?ez C, Ziermann H, Peterson T, Denk K, Mull S, Ziegler J, Davis SJ, Schneeberger K, Quint M (2014). The DET1- COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep 9, 1983-1989. [30] Ding L, Wang S, Song ZT, Jiang YP, Han JJ, Lu SJ, Li L, Liu JX (2018). Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis. Cell Rep 25, 1718-1728. [31] Djakovic-Petrovic T, De Wit M, Voesenek LACJ, Pierik R (2007). DELLA protein function in growth responses to canopy signals. Plant J 51, 117-126. [32] Domagalska MA, Leyser O (2011). Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12, 211-221. [33] Dong XJ, Yan Y, Jiang BC, Shi YT, Jia YX, Cheng JK, Shi YH, Kang JQ, Li H, Zhang D, Qi LJ, Han R, Zhang SM, Zhou YY, Wang XJ, Terzaghi W, Gu HY, Kang DM, Yang SH, Li JG (2020). The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures. EMBO J 39, e103630. [34] Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A (2013). PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc Natl Acad Sci USA 110, 18017-18022. [35] Finch-Savage WE, Footitt S (2017). Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J Exp Bot 68, 843-856. [36] Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010). Phytochrome regulation of branching in Arabidopsis. Plant Physiol 152, 1914-1927. [37] Foreman J, Johansson H, Hornitschek P, Josse EM, Fankhauser C, Halliday KJ (2011). Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J 65, 441-452. [38] Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC (2003). Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131, 1340-1346. [39] Franklin KA, Whitelam GC (2007). Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39, 1410-1413. [40] Gabriele S, Rizza A, Martone J, Circelli P, Costantino P, Vittorioso P (2010). The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. Plant J 61, 312-323. [41] Galv?o VC, Fankhauser C (2015). Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol 34, 46-53. [42] Galvāo VC, Fiorucci AS, Trevisan M, Franco-Zorilla JM, Goyal A, Schmid-Siegert E, Solano R, Fankhauser C (2019). PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nat Commun 10, 4005. [43] Gao Y, Jiang W, Dai Y, Xiao N, Zhang CQ, Li H, Lu Y, Wu MQ, Tao XY, Deng DX, Chen JM (2015). A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol 87, 413-428. [44] Gao Y, Wu MQ, Zhang MJ, Jiang W, Ren XY, Liang EX, Zhang DP, Zhang CQ, Xiao N, Li Y, Dai Y, Chen JM (2018). A maize phytochrome-interacting factors protein ZmPIF1 enhances drought tolerance by inducing stomatal closure and improves grain yield in Oryza sativa. Plant Biotechnol J 16, 1375-1387. [45] González CV, Ibarra SE, Piccoli PN, Botto JF, Boccalandro HE (2012). Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana. Plant Cell Environ 35, 1958-1968. [46] González-Grandío E, Poza-Carrión C, Sorzano COS, Cubas P (2013). BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25, 834-850. [47] Gu DC, Ji RJ, He CM, Peng T, Zhang MY, Duan J, Xiong CY, Liu XC (2019). Arabidopsis histone methyltransferase SUVH5 is a positive regulator of light-mediated seed germination. Front Plant Sci 10, 841. [48] Han X, Yu H, Yuan RR, Yang Y, An FY, Qin GJ (2019). Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity. iScience 15, 611-622. [49] Hayashi F, Ichino T, Osanai M, Wada K (2000). Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41, 1096-1101. [50] Hayes S, Pantazopoulou CK, van Gelderen K, Reinen E, Tween AL, Sharma A, de Vries M, Prat S, Schuurink RC, Testerink C, Pierik R (2019). Soil salinity limits plant shade avoidance. Curr Biol 29, 1669-1676. [51] Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, Xenarios I, Fankhauser C (2012). Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71, 699-711. [52] Ibarra SE, Auge G, Sánchez RA, Botto JF (2013). Transcriptional programs related to phytochrome A function in Arabidopsis seed germination. Mol Plant 6, 1261-1273. [53] Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G (2008). Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27, 1277-1288. [54] Jiang BC, Shi YT, Zhang XY, Xin XY, Qi LJ, Guo HW, Li JG, Yang SH (2017). PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci USA 114, E6695-E6702. [55] Jiang JS, Xiao YM, Chen H, Hu W, Zeng LP, Ke HY, Ditengou FA, Devisetty U, Palme K, Maloof J, Dehesh K (2020). Retrograde induction of phyB orchestrates ethylene-auxin hierarchy to regulate growth. Plant Physiol 183, 1268-1280. [56] Jiang ZM, Xu G, Jing YJ, Tang WJ, Lin RC (2016). Phytochrome B and REVEILLE1/2-mediated signaling controls seed dormancy and germination in Arabidopsis. Nat Commun 7, 12377. [57] Jing YJ, Guo Q, Zha P, Lin RC (2019). The chromatin-remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis. Plant Cell Environ 42, 2495-2507. [58] Kang MY, Kwon HY, Kim NY, Sakuraba Y, Paek NC (2015). CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10)contributes to floral repression under non-inductive short days in Arabidopsis. Int J Mol Sci 16, 26493-26505. [59] Kebrom TH, Brutnell TP, Finlayson SA (2010). Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signaling pathways. Plant Cell Environ 33, 48-58. [60] Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008a). SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light- dependent seed germination downstream of PIL5. Plant Cell 20, 1260-1277. [61] Kim SY, Yu XH, Michaels SD (2008b). Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant Physiol 148, 269-279. [62] Kim W, Zeljkovi? S?, Piskurewicz U, Megies C, Tarkowski P, Lopez-Molina L (2019). put2) and decaying seeds enhance phyA-media- ted germination by overcoming PIF1 repression of germination. PLoS Genet 15, e1008292. [63] Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, White- lam GC, Franklin KA (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19, 408-413. [64] Kovács H, Aleksza D, Baba AI, Hajdu A, Király AM, Zsigmond L, Tóth SZ, Kozma-Bognár L, Szabados L (2019). Light control of salt-induced proline accumulation is mediated by ELONGATED HYPOCOTYL 5 in Arabidopsis. Front Plant Sci 10, 1584. [65] Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2017). Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15, 458-471. [66] Lau OS, Song ZJ, Zhou ZM, Davies KA, Chang J, Yang X, Wang SQ, Lucyshyn D, Tay IHZ, Wigge PA, Bergmann DC (2018). Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development. Curr Biol 28, 1273-1280. [67] Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006). Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133, 3213-3222. [68] Lee CM, Thomashow MF (2012). Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA 109, 15054-15059. [69] Lee KP, Piskurewicz U, Tureckova V, Carat S, Chappuis R, Strnad M, Fankhauser C, Lopez-Molina L (2012). Spatially and genetically distinct control of seed germination by phytochromes A and B. Genes Dev 26, 1984-1996. [70] Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A, Wigge PA, Sch?fer E, Vierstra RD, Casal JJ (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897-900. [71] Li C, Qi LJ, Zhang SM, Dong XJ, Jing YJ, Cheng JK, Feng ZY, Peng J, Li H, Zhou YY, Wang XJ, Han R, Duan J, Terzaghi W, Lin RC, Li JG (2022). Mutual upregulation of HY5 and TZP in mediating phytochrome A signaling. Plant Cell 34, 633-654. [72] Li G, Siddiqui H, Teng YB, Lin RC, Wan XY, Li JG, Lau OS, Ouyang XH, Dai MQ, Wan JM, Devlin PF, Deng XW, Wang HY (2011). Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13, 616-622. [73] Li J, Terzaghi W, Gong YY, Li CR, Ling JJ, Fan YY, Qin NX, Gong XQ, Zhu DM, Deng XW (2020). Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nat Commun 11, 1592. [74] Li JM, Nagpal P, Vitart V, McMorris TC, Chory J (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398-401. [75] Li N, Bo CP, Zhang YY, Wang L (2021). PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. J Exp Bot 72, 4577-4589. [76] Lin RC, Ding L, Casola C, Ripoll DR, Feschotte C, Wang HY (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302-1305. [77] Liu J, Zhang F, Zhou JJ, Chen F, Wang BS, Xie XZ (2012). Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78, 289-300. [78] Mao ZL, He SB, Xu F, Wei XX, Jiang L, Liu Y, Wang WX, Li T, Xu PB, Du SS, Li L, Lian HL, Guo TT, Yang HQ (2020). Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis. New Phytol 225, 848-865. [79] Martínez C, Espinosa-Ruíz A, de Lucas M, Bernardo- García S, Franco-Zorrilla JM, Prat S (2018). PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J 37, e99552. [80] Murata Y, Mori IC, Munemasa S (2015). Diverse stomatal signaling and the signal integration mechanism. Annu Rev Plant Biol 66, 369-392. [81] Nir I, Shohat H, Panizel I, Olszewski N, Aharoni A, Weiss D (2017). The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. Plant Cell 29, 3186-3197. [82] Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G (2009). Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21, 403-419. [83] Oh E, Yamaguchi S, Hu JH, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G (2007). PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19, 1192-1208. [84] Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3, e03031. [85] Oh J, Park E, Song K, Bae G, Choi G (2020). PHYTOCHROME INTERACTING FACTOR8 inhibits phytochrome A-mediated far-red light responses in Arabidopsis. Plant Cell 32, 186-205. [86] Park J, Lee N, Kim W, Lim S, Choi G (2011). ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23, 1404-1415. [87] Park YJ, Lee HJ, Gil KE, Kim JY, Lee JH, Lee H, Cho HT, Vu LD, de Smet I, Park CM (2019). Developmental programming of thermonastic leaf movement. Plant Physiol 180, 1185-1197. [88] Park YJ, Lee HJ, Ha JH, Kim JY, Park CM (2017). COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol 215, 269-280. [89] Pham VN, Kathare PK, Huq E (2018). Phytochromes and phytochrome interacting factors. Plant Physiol 176, 1025-1038. [90] Piskurewicz U, Ture?ková V, Lacombe E, Lopez-Molina L (2009). Far-red light inhibits germination through DELLA- dependent stimulation of ABA synthesis and ABI3 activity. EMBO J 28, 2259-2271. [91] Qiu YJ, Li MN, Kim RJA, Moore CM, Chen M (2019). Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat Commun 10, 140. [92] Qu GP, Li H, Lin XL, Kong XX, Hu ZL, Jin YH, Liu Y, Song HL, Kim DH, Lin RC, Li JG, Jin JB (2020). Reversible sumoylation of FHY1 regulates phytochrome a signaling in Arabidopsis. Mol Plant 13, 879-893. [93] Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M (2016). Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2, 15190. [94] Reddy SK, Holalu SV, Casal JJ, Finlayson SA (2013). Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light. Plant Physiol 163, 1047-1058. [95] Reymond MC, Brunoud G, Chauvet A, Martínez-Garcia JF, Martin-Magniette ML, Monéger F, Scutt CP (2012). A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. Plant Cell 24, 2812-2825. [96] Rolauffs S, Fackendahl P, Sahm J, Fiene G, Hoecker U (2012). Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio. Plant Physiol 160, 2015-2027. [97] Sakuraba Y, Bülbül S, Piao WL, Choi G, Paek NC (2017). Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways. Plant J 92, 1106-1120. [98] Schwartz CJ, Lee J, Amasino R (2017). Variation in shade- induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation. PLoS One 12, e0187768. [99] Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008). The microRNA regulated SBP-box genes SPL9 and SPL15control shoot maturation in Arabidopsis. Plant Mol Biol 67, 183-195. [100] Seaton DD, Toledo-Ortiz G, Ganpudi A, Kubota A, Imaizumi T, Halliday KJ (2018). Dawn and photoperiod sensing by phytochrome A. Proc Natl Acad Sci USA 115, 10523-10528. [101] Shi H, Wang X, Mo XR, Tang C, Zhong SW, Deng XW (2015). Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc Natl Acad Sci USA 112, 3817-3822. [102] Shi H, Zhong SW, Mo XR, Liu N, Nezames CD, Deng XW (2013). HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25, 3770-3784. [103] Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996). Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 93, 8129-8133. [104] Shu K, Liu XD, Xie Q, He ZH (2016). Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9, 34-45. [105] Soy J, Leivar P, González-Schain N, Sentandreu M, Prat S, Quail PH, Monte E (2012). Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant J 71, 390-401. [106] Stirnberg P, Zhao SQ, Williamson L, Ward S, Leyser O (2012). FHY3 promotes shoot branching and stress tole- rance in Arabidopsis in an AXR1-dependent manner. Plant J 71, 907-920. [107] Stracke R, Werber M, Weisshaar B (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4, 447-456. [108] Strasser B, Sánchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdán PD (2010). Arabidopsis thaliana life without phytochromes. Proc Natl Acad Sci USA 107, 4776-4781. [109] Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Ba?urle I, Kudla J, Nagy F, Scha?fer E, Harter K (2001). Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294, 1108-1111. [110] Tao Y, Ferrer JL, Ljung K, Pojer F, Hong FX, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng YF, Lim J, Zhao YD, Ballaré CL, Sandberg G, Noel JP, Chory J (2008). Rapid synthesis of auxin via a new tryptophan- dependent pathway is required for shade avoidance in plants. Cell 133, 164-176. [111] Todaka D, Nakashima K, Maruyama K, Kidokoro S, Osakabe Y, Ito Y, Matsukura S, Fujita Y, Yoshiwara K, Ohme-Takagi M, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012). Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc Natl Acad Sci USA 109, 15947-15952. [112] Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M, Halliday KJ (2014). The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet 10, e1004416. [113] Vaistij FE, Gan YB, Penfield S, Gilday AD, Dave A, He ZS, Josse EM, Choi G, Halliday KJ, Graham IA (2013). Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proc Natl Acad Sci USA 110, 10866-10871. [114] Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006. [115] Wang F, Chen XX, Dong SJ, Jiang XC, Wang LY, Yu JQ, Zhou YH (2020a). Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. Plant Biotechnol J 18, 1041-1055. [116] Wang F, Guo ZX, Li HZ, Wang MM, Onac E, Zhou J, Xia XJ, Shi K, Yu JQ, Zhou YH (2016). Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol 170, 459-471. [117] Wang F, Wang XJ, Zhang Y, Yan JR, Ahammed GJ, Bu X, Sun X, Liu YF, Xu T, Qi HY, Qi MF, Li TL (2022a). SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato. New Phytol 233, 2127-2143. [118] Wang F, Wu N, Zhang LY, Ahammed GL, Chen XX, Xiang X, Zhou J, Xia XJ, Shi K, Yu JQ, Foyer CH, Zhou YH (2018). Light signaling-dependent regulation of photoinhibition and photoprotection in tomato. Plant Physiol 176, 1311-1326. [119] Wang F, Yan JR, Ahammed GJ, Wang XJ, Bu X, Xiang HZ, Li YB, Lu JZ, Liu YF, Qi HY, Qi MF, Li TL (2020b). PGR5/PGRL1 and NDH mediate far-red light-induced photoprotection in response to chilling stress in tomato. Front Plant Sci 11, 669. [120] Wang F, Zhang LY, Chen XX, Wu XD, Xiang X, Zhou J, Xia XJ, Shi K, Yu JQ, Foyer CH, Zhou YH (2019a). SlHY5 integrates temperature, light, and hormone signaling to balance plant growth and cold tolerance. Plant Physiol 179, 749-760. [121] Wang L, Wang B, Jiang L, Liu X, Li XL, Lu ZF, Meng XB, Wang YH, Smith SM, Li JY (2015). Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27, 3128-3142. [122] Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez- Garcia MD, Ogé L, Demotes-Mainard S, Hamama L, Davière JM, Sakr S (2019b). BRANCHED1: a key hub of shoot branching. Front Plant Sci 10, 76. [123] Wang Y, Su C, Yu YJ, He YQ, Wei H, Li N, Li H, Duan J, Li B, Li JG, Davis SJ, Wang L (2022b). Time FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling. Plant Cell 34, 2907-2924. [124] Woods DP, Ream TS, Minevich G, Hobert O, Amasino RM (2014). PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon. Genetics 198, 397-408. [125] Xiao YM, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K (2012). Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149, 1525-1535. [126] Xie YR, Liu Y, Wang H, Ma XJ, Wang BB, Wu GX, Wang HY (2017). Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun 8, 348. [127] Xie YR, Zhou Q, Zhao YP, Li QQ, Liu Y, Ma MD, Wang BB, Shen RX, Zheng ZG, Wang HY (2020). FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Mol Plant 13, 483-498. [128] Xu X, Wang Q, Li WQ, Hu TX, Wang QQ, Yin Y, Liu XH, He S, Zhang MK, Liang Y, Zhu JH, Zhan XQ (2022). Overexpression of SlBBX17 affects plant growth and enhances heat tolerance in tomato. Int J Biol Macromol 206, 799-811. [129] Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005). TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46, 1175-1189. [130] Yan Y, Li C, Dong XJ, Li H, Zhang D, Zhou YY, Jiang BC, Peng J, Qin XY, Cheng JK, Wang XJ, Song PY, Qi LJ, Zheng Y, Li BS, Terzaghi W, Yang SH, Guo Y, Li JG (2020). MYB30 is a key negative regulator of Arabidopsis photomorphogenic development that promotes PIF4 and PIF5 protein accumulation in the light. Plant Cell 32, 2196-2215. [131] Yang LW, Jiang ZM, Jing YJ, Lin RC (2020). PIF1 and RVE1 form a transcriptional feedback loop to control light- mediated seed germination in Arabidopsis. J Integr Plant Biol 62, 1372-1384. [132] Yu YW, Wang J, Zhang ZJ, Quan RD, Zhang HW, Deng XW, Ma LG, Huang RF (2013). Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet 9, e1004025. [133] Yuan CQ, Ahmad S, Cheng TR, Wang J, Pan HT, Zhao LJ, Zhang QX (2018a). Red to far-red light ratio modulates hormonal and genetic control of axillary bud outgrowth in chrysanthemum (Dendranthema grandiflorum ‘Jinba’). Int J Mol Sci 19, 1590. [134] Yuan TT, Xu HH, Zhang Q, Zhang LY, Lu YT (2018b). The COP1 target SHI-RELATED SEQUENCE5 directly activates photomorphogenesis-promoting genes. Plant Cell 30, 2368-2382. [135] Zhang LL, Shao YJ, Ding L, Wang MJ, Davis SJ, Liu JX (2021). XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in Arabidopsis. Sci Adv 7, eabf4427. [136] Zhang RS, Yang CW, Jiang YP, Li L (2019). A PIF7-CONSTANS-centered molecular regulatory network underlying shade-accelerated flowering. Mol Plant 12, 1587-1597. [137] Zhang SM, Li C, Zhou YY, Wang XJ, Li H, Feng ZY (2018). TANDEM ZINC-FINGER/PLUS3 is a key component of phytochrome A signaling. Plant Cell 30, 835-852. [138] Zhang XY, Huai JL, Shang FF, Xu G, Tang WJ, Jing YJ, Lin RC (2017). A PIF1/PIF3-HY5-BBX23 transcription factor cascade affects photomorphogenesis. Plant Physiol 174, 2487-2500. [139] Zhong SW, Shi H, Xue C, Wei N, Guo HW, Deng XW (2014). Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc Natl Acad Sci USA 111, 3913-3920. [140] Zhou Y, Xun QQ, Zhang DZ, Lv MH, Ou Y, Li J (2019). TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15, 600-610. [141] Zhou YY, Yang L, Duan J, Cheng JK, Shen YP, Wang XJ, Han R, Li H, Li Z, Wang LH, Terzaghi W, Zhu DM, Chen HD, Deng XW, Li JG (2018). Hinge region of Arabidopsis phyA plays an important role in regulating phyA function. Proc Natl Acad Sci USA 115, E11864-E11873.
/
〈 | 〉 |