研究报告

茶多糖的抗氧化活性及对细胞氧化损伤的保护机制

展开
  • 1安庆师范大学生命科学学院, 皖西南生物多样性研究与生态保护安徽省重点实验室, 安庆 246133
    2浙江师范大学化学与生命科学学院, 金华 321004
sportman821@sina.com
* E-mail: ryc@zjnu.cn;
第一联系人: 共同第一作者

收稿日期: 2022-04-26

  修回日期: 2022-06-28

  网络出版日期: 2022-07-01

基金资助

国家自然科学基金(31800316);安徽省高校优秀青年人才支持计划(gxyq2018034);皖西南生物多样性研究与生态保护安徽省重点实验室开放基金(Wz2021002);皖西南生物多样性研究与生态保护安徽省重点实验室开放基金(Wz2021003);皖西南生物多样性研究与生态保护安徽省重点实验室开放基金(Wsz202206);皖西南生物多样性研究与生态保护安徽省重点实验室开放基金(Wsz202207);皖西南生物多样性研究与生态保护安徽省重点实验室开放基金(Wy202206);安徽省大学生创新创业训练计划(S202110372108);安徽省大学生创新创业训练计划(S2021-10372104X);安徽省大学生创新创业训练计划(S202110372107);安庆师范大学研究生教育教学改革项目(2021aqnujyxm64);安徽省教学示范课昆虫学(1545);安庆师范大学“敬敷育英”创新创业引领计划和安庆师范大学教研项目(2019aqnujyzc127)

Antioxidant Activity of Tea Polysaccharide and Its Protective Mechanism Against Oxidative Damage

Expand
  • 1The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Sciences, Anqing Normal University, Anqing 246133, China
    2School of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
First author contact: These authors contributed equally to this paper

Received date: 2022-04-26

  Revised date: 2022-06-28

  Online published: 2022-07-01

摘要

茶多糖是一种从茶叶中提取的酸性糖蛋白, 具有良好的抗氧化活性。以自由基清除率为指标, 分析皖西南地区夏秋茶多糖的抗氧化活性, 基于H2O2和EDTA-Fe2+建立的外源性羟基自由基(·OH)损伤细胞模型和PMA诱导内源性羟基自由基损伤模型, 进一步探讨茶多糖对自由基损伤的修复作用机制。结果表明, 茶多糖具有良好的体外抗氧化活性, 对DPPH·和·OH均具有较强的清除效果, EC50值分别为209.5和535.2 µg∙mL-1, 最大清除效率与Vc相当。细胞增殖实验表明, 外源性和内源性自由基氧化损伤模型中细胞存活率均随着茶多糖浓度的增加而升高, 在茶多糖浓度为800 µg∙mL-1时细胞存活率分别高达87.41%和85.84%, 且显著高于模型组(47.67%和48.03%)。在修复机制上, 利用激光共聚焦显微镜显影细胞内活性氧(ROS)分布以及荧光强度, 分析结果显示, 与模型组相比, 茶多糖对于细胞模型中外源和内源性ROS均具有明显的清除效果, 与体外抗氧化实验结果一致。茶多糖在体外表现出良好的自由基清除效率, 可在细胞水平上改善自由基损伤。该研究在细胞水平上揭示了茶多糖清除自由基的抗氧化损伤机制, 为后续进一步阐明茶多糖抗衰老作用奠定了基础。

本文引用格式

张明珠, 秦华光, 穆丹, 杨龙宇, 李虎, 岂泽华, 王玉玺, 张永成, 叶利利, 殷文晶, 王树元, 饶玉春, 吴彦 . 茶多糖的抗氧化活性及对细胞氧化损伤的保护机制[J]. 植物学报, 2022 , 57(4) : 444 -456 . DOI: 10.11983/CBB22088

Abstract

Wan tea polysaccharides (WTPs) is a kind of acid glycoprotein extracted from tea, which has good antioxidant activity. The antioxidant activity of WTPs in Southwest Anhui was analyzed using the scavenging rate of free radicals as an index, and the repair effect of WTPs on free radical damage was further explored based on the exogenous ·OH injury cell model established by H2O2 and EDTA-Fe2+ and the endogenous hydroxyl radical injury model induced by PMA. The results showed that WTPs had good antioxidant activity against DPPH· and ·OH, with EC50 values of 209.5 and 535.2 µg∙mL-1 on scavenging efficiency, respectively, which was similar with Vc. The survival rate of cells in both exogenous and endogenous free radical oxidative damage models increased with the increase of WTPs concentration by cell proliferation assay, which could reach 87.41% and 85.84% when WTPs concentration was 800 µg∙mL-1, which was significantly higher than that in model group (47.67% and 48.03%). In terms of protective mechanism, laser confocal imaging of reactive oxygen species (ROS) distribution in cells and fluorescence intensity analysis showed that compared with the model group, WTPs had significant scavenging effect on exogenous and endogenous ROS in cell models, which was consistent with the results of antioxidant test in vitro. WTPs showed good free radical scavenging efficiency in vitro and its improvement effect on free radical damage at the cellular level. The study revealed antioxidant damage mechanism of WTPs in scavenging free radicals at the cellular level, which laid a foundation for further research on the anti-aging effect of tea polysaccharides on the body aging caused by free radicals.

参考文献

[1] 陈宗懋 (2018). 新时代中国茶产业的创新与发展. 农学学报 8(1), 89-92.
[2] 郝渊鹏, 李静一, 杨瑞, 李慧, 白红彤, 石雷 (2020). 芳香植物精油的抗菌性及在动物生产中的应用. 植物学报 55, 644-657.
[3] 李布青, 张慧玲, 舒庆龄, 张部昌, 葛盛芳 (1996). 中低档绿茶中茶多糖的提取及降血糖作用. 茶叶科学 (1), 67-72.
[4] 黎善铭, 桂海霞, 梅朋飞, 刘鸿艳, 陈世坚, 吴文嫱 (2021). 毛薯多糖提取分离工艺优化及抗氧化活性研究. 热带作物学报(网络首发) http://kns.cnki.net/kcms/detail/46.1019.S.20211026.2212.002.html.
[5] 李勇, 孔令青, 高洪, 严玉霖 (2008). 自由基与疾病研究进展. 动物医学进展 29(4), 85-88.
[6] 刘丹奇, 任发政, 李景明, 侯彩云 (2019). 几种茶多糖降血糖活性的研究. 茶叶科学 39, 652-660.
[7] 刘亮, 钟云凯, 曹少谦, 戚向阳, 罗彤 (2016). 紫菜多糖抗氧化活性及体外免疫调节作用研究. 核农学报 30, 2355-2362.
[8] 刘仲华 (2019). 中国茶叶深加工产业发展历程与趋势. 茶叶科学 39, 115-122.
[9] 马丹颖, 季东超, 徐勇, 陈彤, 田世平 (2019). 活性氧调控植物细胞自噬的研究进展. 植物学报 54, 81-92.
[10] 穆丹, 岂泽华, 李沁, 梁可欣, 华绍贵, 朱星雨, 焦梦婕, 饶玉春, 孙廷哲 (2021). 茶树花挥发物对叶蝉三棒缨小蜂的引诱增强效应. 植物学报 56, 559-572.
[11] 孙红梅 (2014). 茶多糖对中国式摔跤女运动员赛前训练自由基代谢和无氧运动能力的影响及相关性研究. 山东体育学院学报 30(3), 61-66.
[12] 孙廷哲, 岂泽华, 梁可欣, 李沁, 饶玉春, 穆丹 (2021). 蚜害茶树挥发物组分变化的聚类分析. 植物学报 56, 422-432.
[13] 魏楠, 朱强强, 陈际名, 李彤, 李亦凡, 黄业伟, 马啸, 王宣军, 盛军 (2016). 茶多糖对阿霉素抑制肺癌A549细胞增殖作用的影响. 茶叶科学 36, 477-483.
[14] 韦铮, 贺燕, 黄先智, 沈以红, 丁晓雯 (2022). 茶多糖-茶多酚对小鼠肠道氧化应激的改善与作用机制. 食品科学 43(11), 149-155.
[15] 翁蔚, 李书魁, 张琴梅, 朱俊峰 (2021). 茶多糖的组成与保健功效研究进展. 中华中医药杂志 36, 7261-7264.
[16] 吴存兵, 吴君艳, 李家春, 杨岚, 王梦媛 (2021). 黑乌龙茶茶多糖提取工艺的优化及其抗氧化与抑菌性分析. 安徽农业大学学报 48, 1005-1012.
[17] 杨艾华, 宋姗姗, 王微微 (2021). 湄潭白茶多糖抗氧化活性及稳定性研究. 食品科技 46(10), 194-199.
[18] 杨军国, 王丽丽, 陈林 (2018). 茶叶多糖的药理活性研究进展. 食品工业科技 39, 301-307.
[19] 杨小青, 黄晓琴, 韩晓阳, 刘腾飞, 岳晓伟, 伊冉 (2020). 外源物质对茶树耐寒及蔗糖代谢关键基因表达的影响. 植物学报 55, 21-30.
[20] 张凤培, 徐慧, 邱绍峰, 张君丽, 吴小平, 傅俊生 (2021). 鹿茸菇多糖抗氧化保肝研究. 生物技术通报 37, 92-100.
[21] 中国茶叶流通协会 (2019). 中国茶叶行业发展报告. 北京: 中国轻工业出版社. pp. 55-62.
[22] Bai XY, Huang YY, Lu MY, Yang D (2017). HKOH-1: a highly sensitive and selective fluorescent probe for detecting endogenous hydroxyl radicals in living cells. Angew Chem Int Ed 56, 12873-12877.
[23] Chen XY, Sun-Waterhouse D, Yao WZ, Li X, Zhao MM, You LJ (2021). Free radical-mediated degradation of polysaccharides: mechanism of free radical formation and degradation, influence factors and product properties. Food Chem 365, 130524.
[24] Fan MH, Zhu JX, Qian YL, Yue W, Xu Y, Zhang DD, Yang YQ, Gao XY, He HY, Wang DF (2020). Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities. J Food Biochem 44, e13277.
[25] Lu XS, Zhao Y, Sun YF, Yang S, Yang XB (2013). Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects. Food Chem 141, 3415-3423.
[26] Qin HA, Huang L, Teng JW, Wei BY, Xia N, Ye Y (2021). Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation. Food Chem 353, 129419.
[27] Ray PD, Huang BW, Tsuji Y (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24, 981-990.
[28] Wang HS, Chen JR, Ren PF, Zhang YW, Onyango SO (2021). Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide. Ultrason Sonochem 70, 105355.
[29] Wang YF, Mao FF, Wei XL (2012). Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea. Carbohyd Polym 88, 146-153.
[30] Xu LL, Chen Y, Chen ZQ, Gao XD, Wang CL, Panichayupakaranant P, Chen HX (2020). Ultrafiltration isolation, physicochemical characterization, and antidiabetic activities analysis of polysaccharides from green tea, oolong tea, and black tea. J Food Sci 85, 4025-4032.
[31] Yang GQ, Liu ZJ, Zhang RL, Tian XH, Chen J, Han GM, Liu BH, Han XY, Fu Y, Hu ZJ, Zhang ZP (2020). A multi-responsive fluorescent probe reveals mitochondrial nucleoprotein dynamics with reactive oxygen species regulation through super-resolution imaging. Angew Chem Int Ed 59, 16154-16160.
[32] Zhang LY, Yu JL, Xu Q, Zhu JY, Zhang H, Xia GQ, Zang H (2021). Evaluation of total phenolic, flavonoid, carbohydrate contents and antioxidant activities of various solvent extracts from Angelica amurensis root. Nat Prod Res 35, 4084-4088.
[33] Zhang MZ, Su RN, Zhang Q, Hu L, Tian XH, Chen Y, Zhou HP, Wu JY, Tian YP (2018). Ultra-bright intercellular lipidspseudo di-BODIPY probe with low molecular weight, high quantum yield and large two-photon action cross- sections. Sensor Actuat B: Chem 261, 161-168.
文章导航

/