研究报告

基于转录组数据揭示4种兜兰的全基因组复制历史

展开
  • 1深圳市兰科植物保护研究中心, 兰科植物保护与利用国家林业和草原局重点实验室, 深圳 518114
    2西南林业大学生物多样性保护学院, 昆明 650224
    3中国科学院分子植物科学卓越创新中心, 上海 200032
    4中国科学院植物研究所, 系统与进化植物学国家重点实验室, 北京 100093
* E-mail: cjb@cnocc.cn

收稿日期: 2021-06-22

  录用日期: 2021-11-24

  网络出版日期: 2021-11-24

基金资助

中央林业改革发展资金(粤财资环[2019]5号)

Revealing the New Whole-genome Duplication Event of Four Paphiopedilum Species Based on Transcriptome Data

Expand
  • 1Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
    2College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
    3Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
    4State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Received date: 2021-06-22

  Accepted date: 2021-11-24

  Online published: 2021-11-24

摘要

多倍化或全基因组复制(WGD)是物种多样性发生的重要驱动力。目前, 在蕨类、菊科以及豆科等类群丰富的植物中已多次报道全基因组复制事件, 而兰科(Orchidaceae)全基因组复制事件报道极少, 与其丰富的物种多样性存在矛盾, 推测与前期样本量小但类群跨度大的研究策略有关。选取染色体数目变异丰富且多样性较高的兜兰属(Paphiopedilum)为兰科植物代表类群, 基于共享数据库中4种兜兰的转录组数据, 采用同义替换率(Ks)、系统发生基因组学以及相对定年的方法分析兜兰属植物是否发生过全基因组复制事件。结果表明, 在4种兜兰中均检测到3次全基因组复制事件, 分别发生在110.17-119.77 Mya (WGD1)、60.95-74.19 Mya (WGD2)和38.19-45.85 Mya (WGD3)。其中, WGD3为新检测到的全基因组复制事件, 推测其发生在杓兰亚科(Cypripedioideae)与姐妹类群分化后, 兜兰属与姐妹类群分化之前。此外, 3次全基因组复制事件发生后优先保留的基因拷贝在功能上多与当时的环境胁迫响应相关, 推测全基因组复制提高了兜兰属植物祖先对当时极端环境变化的适应性。

本文引用格式

王蒙, 王婷, 夏增强, 李廷章, 金效华, 严岳鸿, 陈建兵 . 基于转录组数据揭示4种兜兰的全基因组复制历史[J]. 植物学报, 2021 , 56(6) : 699 -714 . DOI: 10.11983/CBB21100

Abstract

Polyploidization or whole-genome duplication (WGD) is a major driving force in species diversification. Repeated WGD has been found in species-rich groups or families such as ferns, Asteraceae or Fabaceae. However, there is a paradox between the abundant species diversity of Orchidaceae and the rarely discovered WGD events. We hypothesized that it could be due to the early research strategy of a small sample size of species belonging to not closely related groups. Paphiopedilum has a rich variation on chromosome number and morphology. Here, we select it as the representative group of orchids, and use the synonymous substitution rate (Ks), phylogenomic and relative dating methods to detect whether WGD events have been occurred in P. armeniacum, P. concolor, P. hirsutissimum or P. malipoense based on the shared transcriptome data. The result shows that three WGDs are detected in all four species of Paphiopedilum, which occurred in 110.17-119.77 Mya (WGD1), 60.95-74.19 Mya (WGD2), and 38.19-45.85 Mya (WGD3), respectively. WGD3 is a newly detected whole-genome duplication event in orchids and speculated to occur after the differentiation of Cypripedioideae and its sister groups, but before the differentiation of Paphiopedilum and its sister groups. In addition, the retained duplicated genes of three WGDs are functionally related with the environmental stress response at that time. It is speculated that WGD has improved the adaptability of the ancestors of Paphiopedilum to extreme environmental changes.

参考文献

[1] 王芳, 王淇, 赵曦阳 (2019). 低温胁迫下植物的表型及生理响应机制研究进展. 分子植物育种 17, 5144-5153.
[2] 汪浩, 张锐, 张娇, 沈慧, 戴锡玲, 严岳鸿 (2019). 转录组测序揭示翼盖蕨(Didymochlaena trancatula)的全基因组复制历史. 生物多样性 27, 1221-1227.
[3] 王婷, 夏增强, 舒江平, 张娇, 王美娜, 陈建兵, 王慷林, 向建英, 严岳鸿 (2021). 全基因组复制事件的绝对定年揭示莲座蕨属植物的迟滞演化. 生物多样性 29, 722-734.
[4] 王筠竹, 陈跃, 秦德辉, 陈丽萍, 孙崇波 (2019). 兰科植物染色体研究现状及前景. 分子植物育种 17, 3717-3725.
[5] 王振怡, 王希胤 (2020). 染色体数目减少及B染色体产生的进化基因组学模型. 中国科学: 生命科学 50, 524-537.
[6] 杨有新, 王峰, 蔡加星, 喻景权, 周艳虹 (2014). 光质和光敏色素在植物逆境响应中的作用研究进展. 园艺学报 41, 1861-1872.
[7] 杨志娟 (2006). 兜兰属(Paphiopedilum)植物细胞学及其亲缘关系的研究. 硕士论文. 杨凌: 西北农林科技大学. pp. 12-36.
[8] Adams KL, Wendel JF (2005). Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8, 135-141.
[9] Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Brière C, Owens GL, Carrère S, Mayjonade B, Legrand L, Gill N, Kane NC, Bowers JE, Hubner S, Bellec A, Bérard A, Bergès H, Blanchet N, Boniface MC, Brunel D, Catrice O, Chaidir N, Claudel C, Donnadieu C, Faraut T, Fievet G, Helmstetter N, King M, Knapp SJ, Lai Z, Le Paslier MC, Lippi Y, Lorenzon L, Mandel JR, Marage G, Marchand G, Marquand E, Bret-Mestries E, Morien E, Nambeesan S, Nguyen T, Pegot-Espagnet P, Pouilly N, Raftis F, Sallet E, Schiex T, Thomas J, Vandecasteele C, Varès D, Vear F, Vautrin S, Crespi M, Mangin B, Burke JM, Salse J, Muños S, Vincourt P, Rieseberg LH, Langlade NB (2017). The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148-152.
[10] Blanc G, Wolfe KH (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667-1678.
[11] Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
[12] Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015). How tree roots respond to drought. Front Plant Sci 6, 547.
[13] Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng ZJ, Sun FM, Liu WQ, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang MN, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015). The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47, 65-72.
[14] Castresana J (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540-552.
[15] Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, van den Berg C, Schuiteman A (2015). An updated classification of Orchidaceae. Bot J Linn Soc 177, 151-174.
[16] Chen SC, Liu ZJ, Zhu GH, Lang KY, Tsi ZH, Luo YB, Jin XH, Cribb PJ, Wood JJ, Gale SW, Ormerod P, Vermeulen JJ, Wood HP, Clayton D, Bell A (2009). Orchidaceae. In: Wu ZY, Raven PH, Hong DY, eds. Flora of China, Vol. 25. Beijing: Science Press. pp. 381-382.
[17] Comai L (2005). The advantages and disadvantages of being polyploid. Nat Rev Genet 6, 836-846.
[18] Cox AV, Abdelnour GJ, Bennett MD, Leitch IJ (1998). Genome size and karyotype evolution in the slipper orchids (Cypripedioideae: Orchidaceae). Am J Bot 85, 681-687.
[19] Cox AV, Pridgeon AM, Albert VA, Chase MW (1997). Phylogenetics of the slipper orchids (Cypripedioideae, Or-chidaceae): nuclear rDNA ITS sequences. Plant Syst Evol 208, 197-223.
[20] Cui LY, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW (2006). Widespread genome duplications throughout the history of flowering plants. Genome Res 16, 738-749.
[21] da Conceição LP, de Oliveira ALPC, Barbosa LV (2006). Characterization of the species Epidendrum cinnabarium salzm. (Epidendroideae: Orchidaceae) occurring in dunas do abaeté-salvador, ba-brasil. Cytologia 71, 125-129.
[22] Darriba D, Taboada GL, Doallo R, Posada D (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164-1165.
[23] Das K, Roychoudhury A (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2, 53.
[24] De Bodt S, Maere S, Van de Peer Y (2005). Genome duplication and the origin of angiosperms. Trends Ecol Evol 20, 591-597.
[25] Edgar RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792-1797.
[26] Emms DM, Kelly S (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20, 238.
[27] Enright AJ, Van Dongen S, Ouzounis CA (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30, 1575-1584.
[28] Fang L, Xu X, Li J, Zheng F, Li MZ, Yan JW, Li Y, Zhang XH, Li L, Ma GH, Zhang AY, Lv FB, Wu KL, Zeng SJ (2020). Transcriptome analysis provides insights into the non-methylated lignin synthesis in Paphiopedilum armeniacum seed. BMC Genomics 21, 524.
[29] Goldman N, Yang Z (1994). A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11, 725-736.
[30] Govaerts R, Bernet P, Kratochvil K, Gerlach G, Carr G, Alrich P, Pridgeon AM, Pfahl J, Campacci MA, Baptista DH, Tigges H, Shaw J, Cribb P, George A, Kreuz K, Wood J (2021). World checklist of Orchidaceae. https://wcsp.science.kew.org/. 2021-05-08.
[31] Gustafsson ALS, Verola CF, Antonelli A (2010). Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmann seggella (Orchidaceae: Epidendroideae). BMC Evol Biol 10, 177.
[32] Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8, 1494-1512.
[33] Hasing T, Tang HB, Brym M, Khazi F, Huang TF, Chambers AH (2020). A phased Vanilla planifolia genome enables genetic improvement of flavour and production. Nat Food 1, 811-819.
[34] Huang CH, Qi XP, Chen DY, Qi J, Ma H (2020). Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. J Integr Plant Biol 62, 433-455.
[35] Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017). Fast genome- wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34, 2115-2122.
[36] Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically anno- tated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309-D314.
[37] Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang JY, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng ZJ, Cheng SF, Spooner D, Van Deynze A, Simon P (2016). A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48, 657-666.
[38] Kim YK, Jo S, Cheon SH, Joo MJ, Hong JR, Kwak M, Kim KJ (2020). Plastome evolution and phylogeny of Orchidaceae, with 24 new sequences. Front Plant Sci 11, 22.
[39] Klages JP, Salzmann U, Bickert T, Hillenbrand CD, Gohl K, Kuhn G, Bohaty SM, Titschack J, Müller J, Frederichs T, Bauersachs T, Ehrmann W, van de Flierdt T, Pereira PS, Larter RD, Lohmann G, Niezgodzki I, Uenzelmann-Neben G, Zundel M, Spiegel C, Mark C, Chew D, Francis JE, Nehrke G, Schwarz F, Smith JA, Freudenthal T, Esper O, Pälike H, Ronge TA, Dziadek R (2020). Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81-86.
[40] Leinonen R, Sugawara H, Shumway M (2011). The sequence read archive. Nucleic Acids Res 39, D19-D21.
[41] Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, Fay MF (2009). Genome size diversity in orchids: consequences and evolution. Ann Bot 104, 469-481.
[42] Li D, Yin H, Zhao C, Zhu G, Lǚ F (2014). Transcriptome analysis of tessellated and green leaves in Paphiopedilum orchids using Illumina paired-end sequencing and discovery simple sequence repeat markers. J Plant Biochem Physiol 2, 1000136.
[43] Li MH, Zhang GQ, Lan SR, Liu ZJ,China Phylogeny Consortium (2016). A molecular phylogeny of Chinese orchids. J Syst Evol 54, 349-362.
[44] Li WZ, Godzik A (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659.
[45] Mandáková T, Lysak MA (2018). Post-polyploid diploidization and diversification through dysploid changes. Curr Opin Plant Biol 42, 55-65.
[46] McInerney FA, Wing SL (2011). The paleocene-eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu Rev Earth Planet Sci 39, 489-516.
[47] Ming R, VanBuren R, Wai CM, Tang HB, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang JS, Huang LX, Zhang LM, Miao WJ, Zhang J, Ye ZY, Miao CY, Lin ZC, Wang H, Zhou HY, Yim WC, Priest HD, Zheng CF, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng GY, Singh R, Sharma A, Min XJ, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao ZY, Fang JP, Liu J, Zhang XD, Zhang Q, Hu WC, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu XG, Yang XH, Smith JAC, Cushman JC, Paull RE, Yu QY (2015). The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47, 1435-1442.
[48] Murat F, Armero A, Pont C, Klopp C, Salse J (2017). Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet 49, 490-496.
[49] Oberlander KC, Dreyer LL, Goldblatt P, Suda J, Linder HP (2016). Species-rich and polyploid-poor: insights into the evolutionary role of whole-genome duplication from the Cape flora biodiversity hotspot. Am J Bot 103, 1336-1347.
[50] One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-685.
[51] Paterson AH, Bowers JE, Chapman BA (2004). Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101, 9903-9908.
[52] Ren R, Wang HF, Guo CC, Zhang N, Zeng LP, Chen YM, Ma H, Qi J (2018). Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant 11, 414-428.
[53] Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008). Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20, 11-24.
[54] Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004). Mining EST databases to resolve evolutionary events in major crop species. Genome 47, 868-876.
[55] Scrucca L, Fop M, Murphy TB, Raftery AE (2016). Mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J 8, 289-317.
[56] Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212.
[57] Sollars ESA, Harper AL, Kelly LJ, Sambles CM, Ramirez-Gonzalez RH, Swarbreck D, Kaithakottil G, Cooper ED, Uauy C, Havlickova L, Worswick G, Studholme DJ, Zohren J, Salmon DL, Clavijo BJ, Li Y, He ZS, Fellgett A, McKinney LV, Nielsen LR, Douglas GC, Kjær ED, Downie JA, Boshier D, Lee S, Clark J, Grant M, Bancroft I, Caccamo M, Buggs RJA (2017). Genome sequence and genetic diversity of European ash trees. Nature 541, 212-216.
[58] Stamatakis A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313.
[59] Talavera G, Castresana J (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56, 564-577.
[60] Tsai CC, Liao PC, Ko YZ, Chen CH, Chiang YC (2020). Phylogeny and historical biogeography of Paphiopedilum pfitzer (Orchidaceae) based on nuclear and plastid DNA. Front Plant Sci 11, 126.
[61] Unruh SA, McKain MR, Lee YI, Yukawa T, McCormick MK, Shefferson RP, Smithson A, Leebens-Mack JH, Pires JC (2018). Phylotranscriptomic analysis and genome evolution of the Cypripedioideae (Orchidaceae). Am J Bot 105, 631-640.
[62] Upchurch RG (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30, 967-977.
[63] Van de Peer Y, Ashman TL, Soltis PS, Soltis DE (2021). Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33, 11-26.
[64] Van de Peer Y, Mizrachi E, Marchal K (2017). The evolutionary significance of polyploidy. Nat Rev Genet 18, 411-424.
[65] Vellekoop J, Esmeray-Senlet S, Miller KG, Browning JV, Sluijs A, van de Schootbrugge B, Damsté JSS, Brinkhuis H (2016). Evidence for Cretaceous-Paleogene boundary bolide ‘impact winter' conditions from New Jersey, USA. Geology 44, 619-622.
[66] Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8, 161.
[67] Wang YS, Nie F, Shahid MQ, Baloch FS (2020). Molecular footprints of selection effects and whole genome duplication (WGD) events in three blueberry species: detected by transcriptome dataset. BMC Plant Biol 20, 250.
[68] Wei CL, Yang H, Wang SB, Zhao J, Liu C, Gao LP, Xia EH, Lu Y, Tai YL, She GB, Sun J, Cao HS, Tong W, Gao Q, Li YY, Deng WW, Jiang XL, Wang WZ, Chen Q, Zhang SH, Li HJ, Wu JL, Wang P, Li PH, Shi CY, Zheng FY, Jian JB, Huang B, Shan D, Shi MM, Fang CB, Yue Y, Li FD, Li DX, Wei S, Han B, Jiang CJ, Yin Y, Xia T, Zhang ZZ, Bennetzen JL, Zhao SC, Wan XC (2018). Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115, E4151-E4158.
[69] Wendel JF (2000). Genome evolution in polyploids. Plant Mol Biol 42, 225-249.
[70] Wu SD, Han BC, Jiao YN (2020). Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol Plant 13, 59-71.
[71] Yang ZH (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586-1591.
[72] Yu GC, Wang LG, Han YY, He QY (2012). ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: J Integr Biol 16, 284-287.
[73] Yuan Y, Jin XH, Liu J, Zhao X, Zhou JH, Wang X, Wang DY, Lai CS, Xu W, Huang JW, Zha LP, Liu DH, Ma X, Wang L, Zhou MY, Jiang Z, Meng HB, Peng HS, Liang YT, Li RQ, Jiang C, Zhao YY, Nan TG, Jin Y, Zhan ZL, Yang J, Jiang WK, Huang LQ (2018). The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat Commun 9, 1615.
[74] Zachos J, Pagani H, Sloan L, Thomas E, Billups K (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693.
[75] Zhang CF, Huang CH, Liu M, Hu Y, Panero JL, Luebert F, Gao TG, Ma H (2021a). Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. J Integr Plant Biol 63, 1273-1293.
[76] Zhang CF, Zhang TK, Luebert F, Xiang YZ, Huang CH, Hu Y, Rees M, Frohlich MW, Qi J, Weigend M, Ma H (2020). Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole-genome duplications. Mol Biol Evol 37, 3188-3210.
[77] Zhang CL, Chen JH, Huang WX, Song XQ, Niu J (2021b). Transcriptomics and metabolomics reveal purine and phenylpropanoid metabolism response to drought stress in Dendrobium sinense, an endemic orchid species in Hainan island. Front Genet 12, 692702.
[78] Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ, Yoshida K, Fujiwara S, Wang ZW, Zhang YQ, Mitsuda N, Wang MN, Liu GH, Pecoraro L, Huang HX, Xiao XJ, Lin M, Wu XY, Wu WL, Chen YY, Chang SB, Sakamoto S, Ohme-Takagi M, Yagi M, Zeng SJ, Shen CY, Yeh CM, Luo YB, Tsai WC, Van de Peer Y, Liu ZJ (2017). The Apostasia genome and the evolution of orchids. Nature 549, 379-383.
[79] Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS, Chang SB, Chen F, Shi Y, Su YY, Zhang YQ, Chen LJ, Yin YY, Lin M, Huang HX, Deng H, Wang ZW, Zhu SL, Zhao X, Deng C, Niu SC, Huang J, Wang MN, Liu GH, Yang HJ, Xiao XJ, Hsiao YY, Wu WL, Chen YY, Mitsuda N, Ohme-Takagi M, Luo YB, Van de Peer Y, Liu ZJ (2016). The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 6, 19029.
[80] Zhao YY, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu RB, Zhang TK, Egan AN, Yi TS, Huang CH, Ma H (2021). Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol Plant 14, 748-773.
[81] Zheng Y, Jiao C, Sun HH, Rosli HG, Pombo MA, Zhang PF, Banf M, Dai XB, Martin GB, Giovannoni JJ, Zhao PX, Rhee SY, Fei ZJ (2016). iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9, 1667-1670.
[82] Zwaenepoel A, Van de Peer Y (2019). Wgd-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35, 2153-2155.
文章导航

/

674-3466/bottom_cn.htm"-->