热点评述

而今迈步从头越: 马铃薯育种跨入“有种”时代

展开
  • 中国科学院遗传与发育生物学研究所, 植物基因组学国家重点实验室, 北京 100101

收稿日期: 2021-09-02

  录用日期: 2021-09-16

  网络出版日期: 2021-09-17

基金资助

国家自然科学基金(31991183)

Conquering the Summit: A New Era Towards Hybrid Seed Potato Breeding

Expand
  • State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2021-09-02

  Accepted date: 2021-09-16

  Online published: 2021-09-17

摘要

现代栽培马铃薯(Solanum tuberosum)是同源四倍体, 基因组高度杂合, 遗传组成复杂, 存在严重的自交衰退, 优异性状难以聚合, 使得育种周期漫长, 造成基于种子传代的马铃薯杂交育种难以突破。与此同时, 块茎无性繁殖导致马铃薯繁殖系数低、储运成本高和易携带病虫害等痼疾, 且种薯脱毒成本高, 限制其产业化发展。近期, 中国农业科学院深圳农业基因组研究所黄三文团队运用基因组设计理论和方法体系培育杂交马铃薯, 用二倍体育种替代四倍体育种, 实现了用杂交种子繁殖替代薯块繁殖, 创制了第1代高纯度的二倍体自交系和杂种优势明显的杂交马铃薯品系。该研究是马铃薯育种领域里程碑式的重大成果, 开启了基于基因组设计和种子迭代的马铃薯生物育种新纪元。

本文引用格式

许操 . 而今迈步从头越: 马铃薯育种跨入“有种”时代[J]. 植物学报, 2021 , 56(5) : 516 -519 . DOI: 10.11983/CBB21151

Abstract

Modern cultivated potato (Solanum tuberosum) is a clonally propagated autotetraploid, with highly heterozygous genome, complex genetic background, and severe inbreeding depression, making it difficult to combine eminent traits and resulting in a long breeding cycle and the dilemma of ‘genetic stagnation’ of potato hybrid breeding. Moreover, clonal propagation leads to low reproduction coefficient, high cost of storage and transportation, whereas tubers are easy to carry viruses and pests, which have hindered the development of potato industry for a long time. Recently a team led by Sanwen Huang in Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, successfully use genome design to develop the pure and fertile potato lines and thereby the hybrid F1, reinvent potato from a clonally propagated tetraploid into a seed-propagated diploid. This work is a milestone in potato breeding, that starts a new era of genome design and rapid potato breeding.

参考文献

[1] 金黎平, 杨宏福 (1996). 马铃薯遗传育种中的染色体倍性操作(综述). 农业生物技术学报 4, 70-75.
[2] 李颖, 李广存, 李灿辉, 屈冬玉, 黄三文 (2013). 二倍体杂种优势马铃薯育种的展望. 中国马铃薯 27, 96-99.
[3] 邱晨辉 (2021). 第一代全基因组设计的杂交马铃薯问世!《细胞》刊文. 中国青年报 2021-06-25.
[4] 唐蝶 (2019). 马铃薯自交衰退的遗传基础. 硕士论文. 深圳: 中国农业科学院农业基因组研究所. pp. 1-46.
[5] 徐建飞, 金黎平 (2017). 马铃薯遗传育种研究: 现状与展望. 中国农业科学 50, 990-1015.
[6] Bethke PC, Nassar AMK, Kubow S, Leclerc YN, Li XQ, Haroon M, Molen T, Bamberg J, Martin M, Donnelly DJ (2014). History and origin of Russet Burbank (Netted Gem) a sport of Burbank. Am J Potato Res 91, 594-609.
[7] Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, Bethke PC, Spooner DM, Novy RG, De Jong H, De Jong WS, Bamberg JB, Thompson AL, Bizimungu B, Holm DG, Brown CR, Haynes KG, Sathuvalli VR, Veilleux RE, Miller JC Jr, Bradeen JM, Jiang JM (2016). Reinventing potato as a diploid inbred line-based crop. Crop Sci 56, 1412.
[8] Li WT, Chetelat RT (2010). A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 330, 1827-1830.
[9] Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, van Eck HJ (2011). Towards F1 hybrid seed potato breeding. Potato Res 54, 301-312.
[10] Markel K, Shih PM (2021). From breeding to genome design: a genomic makeover for potatoes. Cell 184, 3843-3845.
[11] Qiao H, Wang F, Zhao L, Zhou JL, Lai Z, Zhang YS, Robbins TP, Xue YB (2004a). The F-box protein AhSLF- S2 controls the pollen function of S-RNase-based self-in-compatibility. Plant Cell 16, 2307-2322.
[12] Qiao H, Wang HY, Zhao L, Zhou JL, Huang J, Zhang YS, Xue YB (2004b). The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16, 582-595.
[13] Stokstad E (2019). The new potato. Science 363, 574-577.
[14] Ye MW, Peng Z, Tang D, Yang ZM, Li DW, Xu YM, Zhang CZ, Huang SW (2018). Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants 4, 651-654.
[15] Zhang CZ, Wang P, Tang D, Yang ZM, Lu F, Qi JJ, Tawari NR, Shang Y, Li CH, Huang SW (2019). The genetic basis of inbreeding depression in potato. Nat Genet 51, 374-378.
[16] Zhang CZ, Yang ZM, Tang D, Zhu YH, Wang P, Li DW, Zhu GT, Xiong XY, Shang Y, Li CH, Huang SW (2021). Genome design of hybrid potato. Cell 184, 3873-3883.
[17] Zhou Q, Tang D, Huang W, Yang ZM, Zhang Y, Hamilton JP, Visser RGF, Bachem CWB, Buell CR, Zhang ZH, Zhang CZ, Huang SW (2020). Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat Ge-net 52, 1018-1023.
文章导航

/