[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告

Ca2+对小麦萌发及幼苗抗盐性的效应

展开
  • 山西师范大学生命科学学院, 临汾 041004

收稿日期: 2010-05-11

  修回日期: 2010-11-09

  网络出版日期: 2011-05-09

基金资助

增强UV-B辐射与He-Ne激光辐射对小麦细胞分束分裂影响机制的研究

Effects of Ca2+ on Wheat Germination and Seedling Development Under Saline Stress

Expand
  • College of Life Science, Shanxi Normal University, Linfen 041004, China

Received date: 2010-05-11

  Revised date: 2010-11-09

  Online published: 2011-05-09

摘要

以冬小麦(Triticum aestivum)临远077038为材料, 研究了施入外源Ca2+对150、200、250及350 mmol·L–1NaCl胁迫下小麦种子萌发及幼苗生长发育的影响。结果表明: 20 mmol·L–1CaCl2浸种能够提高小麦在150–250 mmol·L–1盐胁迫下种子的发芽率, 并能增强其生长势; 当NaCl浓度为350 mmol·L–1时, 小麦种子不能萌发, 且在以上浓度的NaCl胁迫下, 小麦种子均不能发育成苗。对NaCl胁迫下的小麦幼苗施入外源Ca2+后, 提高了幼苗膜稳定性, 降低了膜脂过氧化程度, 从而减轻了盐胁迫对幼苗膜的伤害, 表现为电导率降低、MDA含量降低及SOD和POD活性提高, 并且提高了幼苗的呼吸强度及叶绿素含量, 促进了幼苗生长及生物量的积累; Ca2+的缓解效应随着盐胁迫的加剧逐渐减弱, 在浓度为350 mmol·L–1的盐胁迫下, 幼苗的生物量显著低于对照。以上结果表明, 与水处理相比, 20 mmol·L–1CaCl2处理能够更大程度地促进小麦的生长发育。

本文引用格式

杨利艳, 韩榕 . Ca2+对小麦萌发及幼苗抗盐性的效应[J]. 植物学报, 2011 , 46(2) : 155 -161 . DOI: 10.3724/SP.J.1259.2011.00155

Abstract

To explore the external Ca2+ alleviating effect of saline stress on winter wheat germination and seedling development, Triticum aestivum ‘Linyuan 077038’ seeds were treated with 150, 200, 250 and 350 mmol·L–1 NaCl after they were soaked in 20 mmol·L–1CaCl2 or water. Also, wheat seedlings were transplanted to above NaCl solution or supplemented with 20 mmol·L–1CaCl2. Seeds pretreated with CaCl2 showed increased seed germination ratio and growth vigor under 150–250 mmol·L–1NaCl stress but could not germinate under 350 mmol·L–1NaCl stress. However, germinating seeds pretreated with CaCl2 or water could not develop into seedlings under the above NaCl saline stress. Seedlings treated with 150–350 mmol·L–1NaCl supplemented with 20 mmol·L–1CaCl2 showed increased membrane stability and decreased membrane lipid peroxidation, so alleviated salt injury induced by NaCl, decreased relative conductivity and MDA content, as well as increased SOD and POD activity, aspiration intensity and chlorophyll content. Seedling height and biomass with CaCl2 treatment were improved accordingly. Alleviation effects were lower with the higher saline stress; seedling biomass was significantly lower than that of the control under 350 mmol·L–1NaCl saline stress. Treatment with 20 mmol·L–1CaCl2 had more favorable effects than water on wheat development.

参考文献

参考文献
安国勇, 董发才, 胡楠, 宋纯鹏 (2002). 盐胁迫条件下钙对小麦根细胞膜电位和钾离子吸收的影响. 河南大学学报(自然科学版)32, 25-28.
方孝东, 林栖凤, 李冠一, 屈良鹄 (2003). 盐藻线粒体GIY2YIG族归巢内切酶基因受到盐胁迫时增强转录. 中国生物化学与分子生物学报 19 (5): 625-629.
简令成, 王红(2008)Ca2+ 在植物细胞对逆境反应和适应中的调节作用. 植物学通报 25, 255-267.
唐静, 韩宇, 陈康, 王玉图, 刘新 (2007). 钙离子参与一氧化氮促进盐胁迫下的玉米种子萌发. 植物生理学通讯 43, 421-424.
王广印, 周秀梅, 张建伟, 沈军 (2004). Ca2+对NaCl胁迫下黄瓜和南瓜种子发芽的影响. 浙江农业科学 6, 307-309.
王志强, 王春丽, 王同朝, 林同保 (2009). 钙离子对盐胁迫小麦幼苗氮代谢的影响. 生态学报 29, 4335-4345.
朱晓军, 杨劲松, 梁永超, 娄运生, 杨晓英 (2004). 盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响. 中国农业科学 37 (10) :1497-1503.
张志良 (2002). 植物生理学实验指导 (第3版). 北京: 高等教育出版社.
Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N ( 2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystem I and II in Synechoccus spp. Plant Physiol 123, 1047–1056.
Arshi A, Abdin M, Iqbal M (2006). Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiologiae Plantarum 28(2), 137-147.
Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K(2004). Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum)chloroplasts. Plant Sci. 166, 919-928.
Bonilla I, El-hamdaoui A, Bolanos L (2004). Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant and Soil 267(1), 97-107.
Cramer GR (2002). Sodium-calcium interactions under salinity stress. In: L¨auchli, A., Luttge, U. (Eds.), Salinity. Environment-Plants-Molecules. Kluwer, Dordrecht, The Netherlands, pp. 205–227.
Hedden P, Graebe JE (1985). Inhibition of gibberellin biosynthesis by paclobutrazol in cell free homogenates of ucurbita maxima endosperm and Malus pumila Embryos. J Plant Growth Regul 4, 111–122.
Hepler PK (2005). Calcium: A Central Regulator of Plant Growth and Development. Plant Cell 17(8), 2142-2155.
Hirschi KD (2004). The calcium conundrum, both versatile nutrient and specific signal. Plant Physiol 136, 2438-2442.
Pandey AN, Thakrar NK (1997). Effect of chloride salinity on survival and growth of Prosopis chilensis seedlings. Trop Ecol 38, 145-148.
Rahman M, Kayani SA, Gul S (2000).Combined effects of temperature and salinity stress on corn cv. Sunahry, Pak J Biological Sci 9, 1459-1463.
Shabala SN, Shabala L, Van Volkenburgh E, Newman I (2005). Effect of divalent cations on ion fluxes and leaf photochemistry in salinised barley leaves. J. Exp. Bot. 56, 1369–1378.
Shirazi MU, Asif SM, Khanzada B, Khan MA. Moha mmol?L-1ad A (2001). Growth and ion accumulation in some wheat genotypes under NaCl stress. Pak J Biol Sci 4: 388-391
Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007). The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ. Exp. Bot. 59, 173–178.
Tseng MJ, Liu CW, Yiu JC (2007). Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45, 822-833.
Wang Y, Wisniewski M, Meilan R, M Cui, Webb R, Fuchigami L (2005). Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 30, 167-173.
文章导航

/

674-3466/bottom_cn.htm"-->