长白落叶松体胚发生再生体系优化
收稿日期: 2020-02-26
录用日期: 2020-06-05
网络出版日期: 2020-06-05
基金资助
中央高校基金(2572018CL02)
Optimization of the Regeneration System from Somatic Embryogenesis in Larix olgensis
Received date: 2020-02-26
Accepted date: 2020-06-05
Online published: 2020-06-05
以长白落叶松(Larix olgensis)未成熟合子胚为外植体诱导胚性愈伤组织, 通过调节影响体胚发生的营养物质和植物生长调节剂配比, 进行愈伤组织的胚性恢复与保持以及体胚发生再生体系的优化。结果表明: 不同无性系之间胚性愈伤组织诱导率差异显著, 胚性愈伤组织在S+0.2 mg·L -1NAA+0.5 mg·L -1BA+0.5 mg·L -1KT+0.5 g·L -1谷氨酰胺+0.5 g·L -1水解酪蛋白+30 g·L -1蔗糖及3.0 g·L -1植物凝胶培养条件下, 可以恢复胚性并长久保持。在S+20 mg·L -1ABA+60 g·L -1PEG4000+60 g·L -1蔗糖及3.0 g·L -1植物凝胶条件下分化培养6周, 体胚发生率可达100%。将正常发育的体胚先在WPM+ 6 mg·L -1间苯三酚+1.0 g·L -1活性炭+3.0 mg·L -1VB1+20 g·L -1蔗糖及3.0 g·L -1植物凝胶条件下培养2周, 再转接至B5+ 0.4 mg·L -1NAA+1.0 mg·L -1IBA+0.5 mg·L -1GA3+2.0 mg·L -1VB1+1.0 g·L -1活性炭+20 g·L -1蔗糖及3.0 g·L -1植物凝胶条件下培养2周, 可见子叶舒展、下胚轴伸长且根系正常的体胚苗。该研究建立了长白落叶松胚性愈伤组织胚性恢复与保持方法, 并进一步优化了体胚发生的植株再生体系, 为林木资源快速繁育和遗传改良奠定了基础。
刘建飞, 刘炎, 刘克俭, 池阳, 霍志发, 霍永洪, 由香玲 . 长白落叶松体胚发生再生体系优化[J]. 植物学报, 2020 , 55(5) : 605 -612 . DOI: 10.11983/CBB20030
In this study, immature zygotic embryos of Larix olgensis were used as explants to induce embryogenic callus and optimize the regeneration system from somatic embryogenesis. The rejuvenation and preservation of the embryogenic potential of embryogenic callus, the somatic embryogenesis and plant regeneration were investigated through adjusting the nutrition and plant growth regulator. The results showed that the generation rates of embryogenic callus were significantly different among different lines. Under the conditions of S+0.2 mg·L -1NAA+0.5 mg·L -1BA+0.5 mg·L -1KT+0.5 g·L -1glutamine+0.5 g·L -1hydrolyzed casein+30 g·L -1sucrose and 3.0 g·L -1vegetable gel, the embryogenic potential of embryonic callus could be recovered and maintained for a long time. Somatic embryogenesis were induced from embryonic callus cultured in S+20 mg·L -1ABA+60 g·L -1PEG4000+60 g·L -1sucrose and 3.0 g·L -1vegetable gel for 6 weeks, and the generation rate of somatic embryo reached 100%. The normal somatic embryos were first cultured for 2 weeks under the conditions of WPM+6 mg·L -1phloglucinol+1.0 g·L -1active carbon+3.0 mg·L -1VB1+20 g·L -1sucrose and 3.0 g·L -1vegetable gel, and then transferred to B5+0.4 mg·L -1NAA+1.0 mg·L -1IBA+0.5 mg·L -1GA3+2.0 mg·L -1VB1+1.0 g·L -1active carbon+20 g·L -1sucrose and 3.0 g·L -1vegetable gel. After 2 weeks, somatic embryo plantlets with cotyledon stretch, hypocotyl elongation and normal root system were observed. This study established a method for the recovery and maintenance of embryogenic callus from larch, and further optimized the somatic embryogenic pathway, which will lay a foundation for the rapid breeding and genetic improvement of L. olgensis.
[1] | 黄健秋, 卫志明, 许智宏 ( 1995). 马尾松成熟合子胚的体细胞胚胎发生和植株再生. 科学通报 40, 72-75. |
[2] | 齐力旺 ( 2000). 华北落叶松体细胞胚胎发生与遗传转化系统建立的研究. 博士论文. 北京: 中国林业科学研究院. pp. 44-74. |
[3] | 宋跃, 甄成, 张含国, 李淑娟 ( 2016). 长白落叶松胚性愈伤组织诱导及体细胞胚胎发生. 林业科学 52(10), 45-54. |
[4] | 王伟达, 李成浩, 杨静莉, 张含国, 张淑玲 ( 2009). 杂种落叶松未成熟胚的体细胞胚发生和植株再生. 林业科学 12(8), 34-38. |
[5] | Attree SM, Pomeroy MK, Fowke LC ( 1992). Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187, 395-404. |
[6] | Chalupa V, Durzan DJ, Vithayasai C ( 1976). Growth and metabolism of cells and tissue of Jack pine ( Pinus banksiana). 2. The quantitative analysis of the growth of callus from hypocotyls and radicles. Can J Bot 54, 446-455. |
[7] | Durzan DJ, Gupta PK ( 1987). Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures. Plant Sci 52, 229-235. |
[8] | Hakman I, Fowke LC, Von Arnold S, Eriksson T ( 1985). The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Sci 38, 53-59. |
[9] | Kim YW, Youn Y, Noh ER, Kim JC ( 1998). Somatic embryogenesis and plant regeneration from immature zygotic embryos of Japanese larch (Larix leptolepis). Plant Cell Tissue Organ Cult 55, 95-101. |
[10] | Klimaszewska K ( 1989). Plantlet development from immature zygotic embryos of hybrid larch through somatic embryogenesis. Plant Sci 63, 95-103. |
[11] | Klimaszewska K, Devantier Y, Lachance D, Lelu MA, Charest PJ ( 1997). Larix laricinar (tamarack): somatic embryogenesis and genetic transformation. Can J For Res 27, 538-550. |
[12] | Klimaszewska K, Hargreaves C, Lelu-Walter MA, Trontin JF (2016). Advances in conifer somatic embryogenesis since year 2000. In: Germana MA, Lambardi M, eds. In Vitro Embryogenesis in Higher Plants. New York: Humana Press. pp. 131-162. |
[13] | Klimaszewska K, Smith DR ( 1997). Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100, 949-957. |
[14] | Kvaalen H, von Arnold S ( 1991). Effects of various partial pressures of oxygen and carbon dioxide on different stages of somatic embryogenesis in Picea abies. Plant Cell Tissue Organ Cult 27, 49-57. |
[15] | Lelu MA, Klimaszewska K, Charest PJ ( 1994). Somatic embryogenesis from immature and mature zygotic embryos and from cotyledons and needles of somatic plantlets of Larix. Can J For Res 24, 100-106. |
[16] | Li QF, Deng C, Zhu TQ, Li JJ, Zhang HG, Kong LS, Zhang SG, Wang JH, Chen XY ( 2019). Dynamics of physiological and miRNA changes after long-term proliferation in somatic embryogenesis of Picea balfouriana. Trees 33, 469-480. |
[17] | Lulsdorf MM, Tautorus TE, Kikcio SI, Bethune TD, Dunstan DI ( 1993). Germination of encapsulated embryos of interior spruce (Picea glauca engelmannii complex) and black spruce (Picea mariana Mill.). Plant Cell Rep 12, 385-389. |
[18] | Montalbán IA, De Diego N, Moncaleán P ( 2010). Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees 24, 1061-1071. |
[19] | Nunes S, Marum L, Farinha N, Pereira VT, Almeida T, Sousa D, Mano N, Figueiredo J, Dias MC, Santos C ( 2018). Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants. Plant Cell Tissue Organ Cult 132, 71-84. |
[20] | Pla?ková L, Hrdli?ka J, Smykalová I, Cve?ková M, Novák O, Griga M, Dole?al K ( 2015). Cytokinin profiling of long-term in vitro pea (Pisum sativum L.) shoot cultures. Plant Growth Regul 77, 125-132. |
[21] | Roberts DR, Sutton BCS, Flinn BS ( 1990). Erratum: synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68, 1832. |
[22] | Stasolla C, Yeung EC ( 2003). Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74, 15-35. |
[23] | Tautorus TE, Fowke LC, Dunstan DI ( 1991). Somatic embryogenesis in conifers. Can J Bot 69, 1873-1899. |
[24] | Thompson RG, von Aderkas P ( 1992). Somatic embryogenesis and plant regeneration from immature embryos of western larch. Plant Cell Rep 11, 379-385. |
[25] | Tret’yakova IN, Barsukova AV ( 2012). Somatic embryogenesis in in vitro culture of three larch species. Russ J Dev Biol 43, 353-361. |
[26] | von Aderkas P, Bonga JM, Nagmani R ( 1987). Promotion of embryogenesis in cultured megagametophytes of Larix decidua. Can J For Res 17, 1293-1296. |
[27] | Yang XY, Zhang XL ( 2010). Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29, 36-57. |
/
〈 | 〉 |