[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
专题论坛

质膜Na+/H+逆向转运蛋白与植物耐盐性

展开
  • 兰州大学草地农业科技学院, 兰州 730020

收稿日期: 2010-07-23

  修回日期: 2010-09-30

  网络出版日期: 2011-05-09

基金资助

“十一五”国家科技支撑计划;国家自然科学基金

Plasma Membrane Na+/H+ Antiporter Is Involved in Plant Salt Tolerance

Expand
  • School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

Received date: 2010-07-23

  Revised date: 2010-09-30

  Online published: 2011-05-09

摘要

�土壤盐碱化是造成农作物减产的主要原因之一。质膜Na+/H+逆向转运蛋白能够介导植物根部Na+的外排和体内Na+ 的长距离运输, 并能够调控细胞K+的稳态平衡及细胞内pH值和Ca2+的转运, 因此其在植物耐盐性方面具有重要作用。该文概述了植物质膜Na+/H+逆向转运蛋白的分子结构、功能、表达调控及其与植物耐盐性关系等方面的研究进展, 并对今后有关该蛋白的主要研究方向作了分析和展望。

本文引用格式

马清, 包爱科, 伍国强, 王锁民 . 质膜Na+/H+逆向转运蛋白与植物耐盐性[J]. 植物学报, 2011 , 46(2) : 206 -215 . DOI: 10.3724/SP.J.1259.2011.00206

Abstract

Soil salinization is one of the major abiotic factors reducing crop productivity worldwide. The plasma membrane Na+/H+ antiporter plays an important role in plant salt tolerance because it is involved in Na+ exclusion in roots, long-distance Na+ transport in plants and the regulation of cellular K+, pH homeostasis and Ca2+ transport. In this review, we analyze recent advances in molecular structure and function, including expression and regulation of the plasma membrane Na+/H+ antiporter, and its role in plant salt tolerance.
[an error occurred while processing this directive]

参考文献

包爱科, 张金林, 郭正刚, 王锁民 (2006). 液泡膜H+-PPase与植物耐盐性. 植物生理学通讯 42, 777-783.
程玉祥 (2008a). 星星草质膜型逆向转运蛋白基因的克隆和特性分析. 植物生理学通讯 44, 59-64.
程玉祥 (2008b). 过量表达星星草PtSOS1提高拟南芥的耐盐性. 植物生理学通讯 44, 1125-1130.
吕慧颖, 李银心, 孔凡江, 杨庆凯 (2003). 植物Na+/H+逆向转运蛋白研究进展. 植物学通报20, 363-369.
於丙军, 刘友良 (2004). SOS基因家族与植物耐盐性. 植物生理学通讯 40, 409-413.
周玲玲, 祝建波, 曹连莆 (2009). 大叶补血草Na+/H+ 逆向转运蛋白基因(SOS1)的克隆与序列分析. 园艺学报 36, 1353-1358.
Apse MP, Aharon GS, Snedden WA, Blumwald E (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science 1999, 285: 1256-1258.
Apse MP, Sottosanto JB, Blumwald E (2003).Vacuolar cation/H+ exchange,ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36, 229-239.
Cosentino C, Schliebs EF, Bertl A, Thiel G, Homann U (2010). Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum. New Phytol 186, 669-680.
Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004). Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569, 317-320.
Garciadeblás B,Rosario Haro R, Benito B (2007). Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria. Plant Mol Biol 63, 479-490.
Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006). Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a nonselective ion transporter involved in germination and cation transport. J Exp Bot 57, 791-800.
Gong D, Guo Y, Jagendorf AT, Zhu JK (2002). Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 130, 256-264.
Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumoto TK, Zhu JK, Cushman JC, Bressan RA, Hasegawa PM (2001). Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126, 363-375.
Guo KM, Babourina O, Rengel Z (2009). Na+/H+ antiporter activity of the SOS1 gene: lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings. Physiol Plant 137, 155-165.
Guo Y, Halfter U, Ishitani M, Zhu JK (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13, 1383-1399.
Halfter U, Ishitani M, Zhu JK (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3. Proc Natl Acad Sci USA 97, 3735-3740.
Hamada A, Hibino T, Nakamura T, Takabe T (2001). Na+/H+ Antiporter from Synechocystis species PCC 6803, homologous to SOS1, contains an aspartic residue and long C-terminal tail important for the carrier activity. Plant Physiol 125, 437-446.
Ishitani M, Liu J P, Halfter U, Kim CS, Shi WM, Zhu JK (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12, 1667-1677.
Iwaki T, Higashida Y, Tsuji H, Tamai Y, Watanabe Y (1998). Characterization of a second gene (ZSOD22) of a Na+/H+ antiporter from salt-tolerance yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae. Yeast 14, 1167-1174.
Jia ZP, McCullough N, Martel R, Hemmingsen S, Young PG (1992). Gene ampli?cation at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in ?ssion yeast. EMBO J 11, 1631-1640.
Jiang JF, Shi HZ (2008). Signaling control of SOS1 mRNA stability. Plant Signal Behav 3, 687-688.
Kant S, Kant P, Raven E, Barak S (2006). Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29, 1220-1234.
Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006). The plasma membrane Na+/H+ antiporter SOS1 interacts withiRCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103, 18816-18821.
Liu JP, Ishitani M, Halfter U, Kim CS, Zhu JK (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97: 3730-3734.
Maathuis FJ (2006). cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45, 700-711.
Maathuis FJ, Sanders D (2001). Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127, 1617-1625.
Martínez-Atienza J, Jiang XY, Garciadeblás B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143, 1001-1012.
Maughan PJ, Turner TB, Coleman CE (2009). Characterization of salt overly sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52, 647-657.
Munns R, Tester M (2008). Mechanisms of salinity tolerance. Ann Rev Plant Biol 59, 651-681.
Oh DH, Gong QQ, Ulanov A, Zhang Q, Li YZ, Ma WY, Yun DJ, Bressan RA, Bohnert HJ (2007). Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line. J Integr Plant Biol 49, 1484-1496.
Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D'Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009a) . Loss of halophytism by interference with SOS1 expression. Plant Physiol 151, 210-222.
Oh DH, Zahir A, Yun DJ, Bressan RA, Bohnert HJ (2009b). SOS1 and halophytism. Plant Signal Behav 4, 1081-1083.
Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ (2010). Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61, 1205-1213.
Olías R, Eljakaoui Z, Li J, De Morales PA, Marín-Manzano MC, Pardo JM, Belver A (2009a). The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32, 904-916.
Olías R, Eljakaoui Z, Pardo JM, Belver A (2009b). The Na+/H+ exchanger SOS1 controls extrusion and distribution of Na+ in tomato plants under salinity conditions. Plant Signal Behav 4, 973-976.
Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006). Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57, 1181-1199.
Prior C, Potier S, Souociet JL, Sychrova H, Potier S (1996). Characterization of the NHA1 gene encoding a Na+/H+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387, 89-93.
Qi Z, Spalding EP (2004). Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress. Plant Physiol 136, 2548-2555.
Qiu QS, Guo Y, Dietrich MA , Schumaker KS, Zhu JK (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99, 8436-8441.
Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99, 9061-9066.
Ratner A, Jacoby B (1976). Effect of K+, its counter anion and pH on sodium efflux from barley roots. J Exp Bot 87, 843-852.
Shabala L, Cuin TA, Newman IA, Shabala S (2005). Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222, 1041-1050.
Shi HZ, Ishitani M, Kim C, Zhu JK (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97: 6896-6901.
Shi HZ, Quintero FJ, Pardo JM, Zhu JK (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cel1 14, 465-477.
Shi HZ, Lee BH, Wu SJ, Zhu JK (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech 21, 81-85.
Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K (2004). Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135, 1697-1709.
Takahashi R, Liu SK, Takano T (2009). Isolation and characterization of plasma membrane Na+/H+ antiporter genes from salt-sensitive and salt-tolerant reed plants. J Plant Physiol 166, 301-309.
Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T (2002). Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci USA 99, 4109-4114.
Watanabe Y, Miwa S, Tamai Y (1995). Characterization of Na+/H+ antiporter gene closely related to the salt-tolerance of yeast Zygosaccharomyces rouxii. Yeast 11, 829-838.
Wu SJ, Ding L, Zhu JK (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617-627.
Wu YX, Ding N, Zhao X, Zhao MG, Chang ZQ, Liu JQ, Zhang LX (2007). Molecular characterization of PeSOS1: the putative Na+/H+ antiporter of Populus euphratica. Plant Mol Biol 65, 1-11.
Xu HX, Jiang XY, Zhan KH, Cheng X, Pardo JM, Cui D (2008). Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch Biochem Biophys 473, 8-15.
Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006). The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell 18, 747-763.
Zhu J K (2000). Genetic analysis of p lant salt tolerance using Arabidopsis. Plant Physiol 124, 941-948.
Zhu JK (2001a). Plant salt tolerance. Trends Plant Sci 6, 66-71.
Zhu JK (2001b). Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4, 401-406.
Zhu JK (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247-273.
文章导航

/

[an error occurred while processing this directive]