[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告

拟南芥胼胝质合酶基因GSL8参与细胞壁形成和根端静止中心建立与维持

展开
  • 1临沂大学生命科学学院, 临沂 276005;
    2临沂大学现代中药研究所, 临沂 276005

收稿日期: 2012-07-27

  修回日期: 2012-11-17

  网络出版日期: 2013-08-09

基金资助

山东省自然科学基金;临沂大学科研计划项目

Arabidopsis Callose Synthase Gene GSL8 is Required for Cell Wall Formation and Establishment and Maintenance of Quiescent Center

Expand
  • 1College of Life Sciences, Linyi University, Linyi 276005, China;

    2Modern TCM Institute, Linyi University, Linyi 276005, China

Received date: 2012-07-27

  Revised date: 2012-11-17

  Online published: 2013-08-09

摘要

用T-DNA插入和RNA干扰技术敲除拟南芥(Arabidopsis thaliana)胼胝质合酶基因GSL8, 在光学和透射电子显微镜下观察野生型和突变体种子的细胞壁和胚根结构, 比较未敲除和敲除该基因幼苗细胞壁及根端分生组织结构。结果表明, 敲除该基因可导致细胞壁发育不良, 壁上出现大小不等的缺口, 缺口处没有质膜将相邻细胞分隔。用T-DNA插入法抑制该基因表达, 发现在种子发育阶段胚根不能形成正常的静止中心。用小RNA干扰技术抑制该基因表达, 结果显示根端失去静止中心。综合以上结果, 认为该基因不仅参与细胞壁发育, 也参与根端静止中心的建立与维持。

本文引用格式

刘林, 全先庆, 赵小梅, 黄力华, 冯尚彩, 黄坤艳, 周晓燕, 粟文婷 . 拟南芥胼胝质合酶基因GSL8参与细胞壁形成和根端静止中心建立与维持[J]. 植物学报, 2013 , 48(4) : 389 -397 . DOI: 10.3724/SP.J.1259.2013.00389

Abstract

Callose synthase gene GSL8 in Arabidopsis thaliana was knocked out by means of T-DNA insertion or RNA interference. Cell walls and root apical organization in seeds and seedlings of the knockout lines and wild-type were compared by using light and transmission electron microscopes. Gaps of various sizes were found to occur in cell walls in all knockout lines, and there were no plasma membranes in the gap regions to separate the neighboring cells. No normal quiescent center was established in the embryonic root apices during seed development in the T-DNA mutants. Furthermore, the quiescent center was demonstrated to disappear from the root apices of seedlings as the gene GSL8 was silenced by RNA interference. Based on these observations, it is suggested that the gene GSL8 was involved in the formation of cell wall as well as the establishment and maintenance of quiescent center in the root apex.
[an error occurred while processing this directive]

参考文献

Barlow PW (1995). Structure and function at the root apex - phylogenetic and ontogenetic perspectives on apical cells and quiescent centres. Balugka F et al., eds. Structure and function of roots. Dordrecht: Kluwer Academic Publishers. pp. 3-18.
Barratt DHP, K?lling K, Graft A, Pike M, Calder G, Findlay K, Zeeman SC, Smith AM (2011). Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol 155, 328-341.
Bitonti MB, Chiappetta A, Innocenti AM, Liso R, Arrigoni O (1992). Quiescent centre ontogenesis during early germination of Allium cepa L. New Phytol 121, 577-580.
Boke NH (1979). Root glochids and root spurs of Opuntia arenaria (Cactaceae). Am J Bot 69, 1085-1092.
Byrne JM (1973). The root apex of Malva sylvestris. III. Lateral root development and the quiescent center. Am J Bot 60, 657-662.
Chen XY, Liu L, Lee E, Han X, Rim Y, Chu H, Kim SW, Sack F, Kim JY (2009). The Arabidopsis callose synthase gene GSL8 is required for cytokinesis and cell patterning. Plant Physiol 150(1), 105-113.
Clowes FAL (1958). Development of quiescent centres in root meristems. New Phytol 57, 85-88.
Clowes FAL (1978). Origin of quiescence at the root pole of pea embryos. Ann Bot 42, 1237-1239.
Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS (2005). Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42, 315-328.
Dubrovsky JG (1997). Determinate primary-root growth in seedlings of Sonoran desert Cactaceae; its organization, cellular basis, and ecological significance. Planta 203, 85-92.
Dubrovsky JG, Contreras-Burciaga L, Ivanov VB (1998). Cell cycle duration in the root meristem of Sonoran desert Cactaceae as estimated by cell-flow and rate-of-cell production methods. Ann Bot 81, 619-624.
Dubrovsky JG, Gómez-Lomelí LF (2003). Water deficit accelerates determinate developmental program of the primary root and does not affect lateral root initiation in a Sonoran desert Cactaceae, Pachycereus pringlei. Am J Bot 90(6), 823-831.
Enns LC, Kanaoka MM, Torii KU, Comai L, Okada K, Cleland REJ (2005). Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Mol Biol 58, 333-349.
Hong Z, Delauney AJ, Verma DPS (2001). A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13, 755-768.
Huang L, Chen XY, Rim Y, Han X, Cho WY, Kim SW, Kim JY (2009). Arabidopsis glucan synthase-like 10 functions in male gametogenesis. J Plant Physiol 166, 344-352.
Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GBJ (2003). An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15, 2503-2513.
Jürgens G (2001). Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20, 3609-3616.
Kakimoto T, Shibaoka H (1988). Cytoskeletal ultrastructure of phragmoplast-nuclei complexes isolated from cultured tobacco cells. Protoplasma (Suppl) 2, 95-103.
Kakimoto T, Shibaoka H (1992). Synthesis of polysaccharides in phragmoplasts isolated from tobacco BY-2 cells. Plant Cell Physiol 33, 353-361.
Kerk NM, Feldman LJ (1994). The quiescent center in roots of maize: initiation, maintenance and the role in organization of the root apical meristem. Protoplasma 183, 100-106.
Kerk NM, Feldman LJ (1995). A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development 121, 2825-2833.
Lucas WJ, Lee J (2004). Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5, 712-726.
Nishikawa SI, Zinkl GM, Swanson RJ, Maruyama D, Preuss DJ (2005). Callose (β-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biol 5,: 22.
Peterson RL, Vermeer J (1980). Root apex structure in Ephedra monosperma and Ephedra chilensis (Ephedraceae). Am J Bot 67, 815-821.
Raju MVS, Steeves TA, Naylor JM (1964). Developmental studies on Euphorbia esula L.: apices of long and short roots. Can J Bot 42, 1615-1628.
Rensing KH, Samuels AL, Savidge RA (2002). Ultrastructure of vascular cambial cell cytokinesis in pine seedlings preserved by cryofixation and substitution. Protoplasma 220, 39-49.
Richmond TA, Somerville CR (2000). The cellulose synthase superfamily. Plant Physiol 124, 495-498.
Rodríguez-Rodríguez JF, Shishkova S, Napsucialy-Mendivil S, Dubrovsky JG (2003). Apical meristem organization and lack of establishment of the quiescent center in Cactaceae roots with determinate growth. Planta 217(6), 849-857.
Samuels AL, Giddings TH, Staehelin LA (1995). Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130, 1345-1357.
Samuels AL, Staehelin LA (1996). Caffeine inhibits cell plate formation by disrupting membrane reorganization just after the vesicle fusion step. Protoplasma 195, 144-155.
Skene KR, Raven JA, Sprent JI (1998). Cluster root development in Grevillea robusta (Proteaceae) I. Xylem, pericycle, cortex, and epidermis development in a determinate root. New Phytol 138, 725-732.
Stone BA, Clarke AE (1992). Chemistry and physiology of higher plant 1,3-β-glucanase (callose). Stone BA, Clark AE, eds. Chemistry and Biology of (1-3)-β-Glucans. Melbourne, Australia: La Trobe University Press. pp. 365-429.
T?ller A, Brownfield L, Neu C, Twell D, Schulze-Lefert P (2008). Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth. Plant J 54, 911-923.
van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997). Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390, 287-289.
Varney GT, McCully ME (1991). The branch roots of Zea. II. Developmental loss of the apical meristem in field-growth roots. New Phytol 118, 535-546.
Webster PL, Langenauer HD (1973). Experimental control of the activity of the quiescent centre in excised root tips of Zea mays. Planta 112, 91-100.
Wenzel CL, Rost TL (2001). Cell division patterns of the protoderm and root cap in the “closed” root apical meristem of Arabidopsis thaliana. Protoplasma 218, 203-213.
Wilcox H (1962). Growth studies of the root incense cedar, Libocedrus decurrens. The origin and development of primary tissue. Am J Bot 49, 221-236.
Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B (1998). The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125, 521-531.
文章导航

/

[an error occurred while processing this directive]