以东乡野生稻(Oryza rufipogon)耐冷渐渗系IL5335、IL5243及其双亲为试材, 克隆到75条存在高度异质性的Ty1-copia类逆转座子逆转录酶序列, 经聚类分析将这些逆转录酶序列分为7个家族; 家族6和7含有65条逆转录酶序列, 序列间的相似性为44.9%–99.3%; 家族1–5仅含10条逆转录酶序列, 其中8条来源于耐冷渐渗系, 它们与亲本的序列相似性为29.2%–52.8%, 分析发现这些序列曾发生缺失或插入突变。实时荧光定量PCR检测结果显示, IL5335和IL5243中的houba、osr15及osr17逆转录酶的表达量均远高于受体亲本(表达量增加1.50–5.07倍), 表明渐渗杂交诱发改变了IL5335和IL5243中逆转录酶序列的结构及其表达活性。该结果为今后水稻表观遗传学研究及外源优异基因利用奠定了基础。
We used the cold-tolerance introgression lines IL5335 and IL5243 from Oryza sativa cv. ‘Xieqingzao B’ crossed with Dongxiang wild rice (O. rufipogon) and their parents to examine our cloned 75 highly heterogeneous sequences of Ty1-copia retrotransposon reverse transcriptase (RT). Cluster and alignment analyses revealed 7 families for these RT sequences: 65 RT sequences were in families 6 and 7, with similarity from 44.9% to 99.3%. Families 1–5 contained only 10 RT sequences; 8 came from introgression lines. As compared with their parents, in introgression lines, the similarity of RT sequences ranged from 29.2% to 52.8%, and some RT sequences showed deletion or insertion mutation. Real-time quantitative PCR revealed that the expression of houba, osr15 and osr17 RT sequences in IL5335 and IL5243 was 1.50 to 5.07 times higher than in the parents. Thus, the structure and expression of RT sequences in IL5335 and IL5243 changed during introgressive hybridization. These results provide useful information for further investigation of epigenetic phenomenon induced by alien gene introgression.
[an error occurred while processing this directive]
简水溶, 万勇, 罗向东, 方军, 储成才, 谢建坤 (2011). 东乡野生稻苗期耐冷性的遗传分析. 植物学报 46, 21-27.
罗向东, 戴亮芳, 万勇, 胡标林, 李佛生, 李霞, 谢建坤 (2011). 东乡野生稻与栽培稻正反交种间杂种F1的雄配子发生与发育. 植物学报 46, 407-412.
Butelli E, Licciardello C, Zhang Y, Liu JJ, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012). Retrotransposons Control Fruit-Specific, Cold-Depend Accumulation of Anthocyanins in Blood Oranges. Plant Cell 24, 1242-1255.
Chen CY, Daigen M, Hirochika H (2006). Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genom 276, 378-390.
Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007). Genomic Changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19, 3403-3417.
Grandbastein MA (1998). Activation of plant retrotransposons under stress conditions. Trends plant sci 3, 181-187.
Hirochika H, Fukuchi A, Kikuchi F (1992). Retrotransposon families in rice. Mol Gen Genet 233, 209-216.
Hori Y, Fujimoto R, Sato Y, Nishio T (2007). A novel wx mutation caused by insertion of a retrotransposon-like sequence in a glutinous cultivar of rice (Oryza sativa). Theor Appl Genet 115, 217-224.
Kashkush K, Feldman M, Levy AA (2002). Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160, 1651-1659.
Kishhii M, Yamada T, Sasakuma T, Tsujimoto H (2004). Production of wheat-Leymus racemosus chromosome addition Lines. Theor Appl Genet 109, 255-260.
Kobayashi S, Goto-yamamoto N, Hirochika H (2004). Retrotransposon-Induced Mutation in Grape Skin Color. Science 304, 982.
Liu B, Wendel JF (2000). Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43, 874-880.
Murray HG, Thompson WF (1980). Rapid isolation of higher weight DNA. Nucl Acids Res 8, 4321.
Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2010). Mobolization of retrotransposon in synthetic allotetraploid tobacco. New Phytol 186, 135-147.
Qi B, Zhong XF, Zhu B, Zhao N, Xu LY, Zhang HK, Yu XM, Liu B (2010). Generality and characteristics of genetic and epigenetic changes in newly synthesized allotetraploid wheat lines. J Genet Genom 37, 737–748.
Shan XH, Liu ZL, Dong ZY, Wang YM, Chen Y, Lin XY, Long LK, Han FP, Dong YS, Liu B (2005). Mobilization of the Active MITE Transposons mPing and Pong in Rice by Introgression from Wild Rice (Zizania latifolia Griseb.). Mol Biol Evol 22, 976-990.
Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007). Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19, 1723-1737.
Wang NN, Wang HY, Wang H, Zhang D, Wu Y, Ou XF, Liu S, Dong ZY, Liu B (2010). Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with zizania latifolia. Plant Biol 10, 1-15.
Wang SP, Zhang QF, Maughan PJ, Maroof MA (1997). Copia-like retrotransposons in rice:sequence heterogene-
ity, species distribution and chromosomal locations. Plant Mol Biol 33, 1051-1058.
Wang, WS, Pan YJ, Zhao XD, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011). Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62, 1951–1960.
Zhao XX, Chai Y, Liu B (2007). Epigenetic inheritance and variation of DNA methylation level and pattern in maize intraspecific hybrids. Plant Sci 172, 930-938.