研究报告

岩溶环境下华南忍冬气孔泌钙及其生物矿化

展开
  • 1华中科技大学生命科学与技术学院生物技术系, 资源生物学与生物技术研究所, 武汉 430074
    2华中科技大学, 分子生物物理教育部重点实验室, 武汉 430074

收稿日期: 2011-04-25

  修回日期: 2011-08-24

  网络出版日期: 2011-11-18

基金资助

国家自然科学基金青年基金项目;湖北省杰出青年基金

Calcium Salt Excreted by Stoma and Its Biomineralization in Lonicera confusa Under a Calcium-rich Environment

Expand
  • 1Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology,Huazhong University of Science and Technology, Wuhan 430074, China;

    2Key Laboratory of Molecular Biophysics, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2011-04-25

  Revised date: 2011-08-24

  Online published: 2011-11-18

摘要

植物对不同生长环境具有不同的适应机制。华南忍冬(Lonicera confusa)是生长于岩溶富钙环境下的典型植物, 它具有通过气孔泌钙方式适应富钙环境的特性。以华南忍冬为研究对象, 利用环境扫描电镜系统研究了华南忍冬气孔泌钙现象, 并对泌钙后自组装的不同生物矿化物质进行了能谱分析, 同时对比分析了能谱仪的点扫描和面扫描方式对相同物质的检测效果。结果表明: 生长于岩溶富钙环境下的华南忍冬叶片表面不同晶型的钙盐是由气孔排出后形成的; 钙盐分泌出组织后, 自组装成多种形态的晶体, 如晶沙、球晶和棱晶, 晶体中除含有较高的钙外, 还含有一定量的硫及其它元素, 推测晶体的成核物质可能是由含硫氨基酸构成的蛋白质。研究结果为相关钙盐的仿生矿化研究提供了一定的启示。能谱分析能有效用于植物表面的微区分析及植物分泌物的物质基础测定。

本文引用格式

吴耿, 付春华, 黄永伟, 李为, 余龙江, 栗茂腾 . 岩溶环境下华南忍冬气孔泌钙及其生物矿化[J]. 植物学报, 2011 , 46(6) : 658 -664 . DOI: 10.3724/SP.J.1259.2011.00658

Abstract

Plants have several strategies to adapt to different environments. Lonicera confusa is a typical species in karst calcium (Ca)-rich environments; to adapt to the Ca-rich environment, it excretes calcium by leaf stoma. In the present study, the calcium-excretion process of L. confusa was investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). We compared the different types of Ca crystals by self-assembly of secreted products with point and line-by-line scanning. Ca crystals are formed after Ca salt is excreted by stoma of L. confusa in the karst Ca-rich environment. Ca salt could self-assemble 3 types of crystals, prisms, ball and crystal sand. Crystals have a large amount of Ca, and sulfur (S) and other elements, which are present in certain ratio. The crystal nucleus protein is rich in S element, which is beneficial for biomineralization of Ca-related crystal and others. EDX could be effectively used for microprobe analysis of plant leaves and identifying plant-excreted products.

参考文献

Bangerth F (1979). Calcium-related physiological disorders of plants. Annu Rev Phytopathol 17, 97-122.

Barker A, Pilbeam D (2006). Handbook of Plant Nutrition. CRC Press. pp. 12.

Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown A, Odds FC, Gow N (2005). Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 280, 23408-23415.

Bush DS (1995). Calcium Regulation in Plant Cells and its Role in Signaling. Annu Rev Plant Physiol Plant Mol Biol 46, 95-122.

Cortes J, Katoh-Fukui R, Moto K, Ribas JC, Ishiguro J (2004). Schizosaccharomyces pombe Pmr1p is essential for cell wall integrity and is required for polarized cell growth and cytokine-sis. Eukaryot Cell 3, 1124-1135.

Foster AS (1956). Plant idioblasts: Remarkable examples of cell specialization. Protoplasma 46, 184-193.

Franceschi VR, Nakata PA (2005). Calcium oxalate in plants: Formation and function. Annu Rev Plant Biol 56, 41-71.

Hudgins JW, Krekling T, Franceschi VR (2003). Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytol 159, 677-690.

Jauregui-Zuniga D, Reyes-Grajeda JP, Moreno A (2005). Modifications on the morphology of synthetically-grown calcium oxalate crystals by crystal-associated proteins isolated from bean seed coats (Phaseolus vulgaris). Plant Sci 168, 1163-1169.

Kirkby EA and Pilbeam DJ (1984). Calcium as a plant nutrient. Plant Cell Environ 7, 397-405.

Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130, 2129-2141.

Kretsinger R (1977). Evolution of the informational role of calcium in eukaryotes. In Evolution of the informational role of calcium in eukaryotes. North Holland, New York. pp. 63-72.

Li XX, Zhang DZ, Lynch-Holm VJ, Okita TW, Franceschi VR (2003). Isolation of a crystal ma-trix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiol 133, 549-559.

Mazen A, Zhang DZ, Franceschi VR (2004). Calcium oxalate formation in Lemna minor: physi-ological and ultrastructural aspects of high capacity calcium sequestration. New Phytol 161, 435-448.

McLaughlin SB, Wimmer R (1999). Tansley Review No. 104 - Calcium physiology and terrestrial ecosystem processes. New Phytol 142, 373-417.

Pathan A, Bond J, Gaskin R (2008). Sample preparation for scanning electron microscopy of plant surfaces-Horses for courses. Micron 39, 1049-1061.

Pennisi SV, McConnell DB (2001a). Inducible calcium sinks and preferential calcium allocation in leaf primordia of Dracaena sanderiana Hort. Sander ex M.T. Mast. (Dracaenaceae). Hortscience 36, 1187-1191.

Pennisi SV, McConnell DB (2001b). Taxonomic relevance of calcium oxalate cuticular deposits in Dracaena Vand. ex L. Hortscience 36, 1033-1036.

Pittman JK, Hirschi KD (2003). Don't shoot the (second) messenger: endomembrane transpor-ters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6, 257-262.

Rentel MC, Knight MR (2004). Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135, 1471-1479.

Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004). A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. P Natl Acad Sci USA 101, 9502-9507.

Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999). A transmembrane hybrid-type histidine kinase in arabidopsis functions as an osmo-sensor. Plant Cell 11, 1743-1754.

Volk GM, Goss LJ. Franceschi VR (2004). Calcium channels are involved in calcium oxalate crystal formation in specialized cells of Pistia stratiotes L. Ann Bot-London 93, 741-753.

Volk GM, Lynch-Holm VJ, Kostman TA, Goss LJ, Franceschi VR (2002). The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biology 4, 34-45.

Webb MA (1999). Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11, 751-761.

White PJ, Broadley MR (2003). Calcium in plants. Ann Bot-London 92, 487-511.

Wu G, Li MT, Zhong FX, Fu CH, Sun J, Yu LJ (2011). Lonicera confusa has an anatomical mechanism to respond to calcium-rich environment. Plant Soil 338:343-353

Yuan DX (2001). On the karst ecosystem. Acta Geol Sin-Engl 75, 336-338.

Zindler-Frank E (1976). Oxalate biosynthesis in relation to photosynthetic pathway and plant productivity. Z Pflanzen physiol 80, 1-13.

Zindler-Frank E, Honow R, Hesse A (2001). Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. J Plant Physiol 158, 139-144.

曹建华, 袁道先, 潘根兴 (2003). 岩溶生态系统中的土壤. 地球科学进展 18, 37-44.

崔福斋 (2007). 生物矿化. 清华大学出版社, 北京.

邓新辉, 蒋忠诚 (2007). 广西弄拉森林植被的喀斯特效应. 地球与环境 35, 128-133.

蒋忠诚 (2000). 论南方岩溶山区生态环境的元素有效态. 中国岩溶 19, 123-128.

李东林, 张玉琼 (1998). Ca2+对植物叶片衰老的双向调节作用. 生物学杂志 15, 8-10.

栗茂腾, 付春华, 刘建民, 李强, 李为, 李涛, 余龙江 (2007). 电子探针在分析农作物叶片元素含量及微区分析中的应用. 作物学报 33, 646-651.

邵邻相, 杨菊林, 郭水良 (2003). 3种香茶菜茎叶表面的扫描电镜观察. 中草药. 34, 947-950
文章导航

/