利用兼并性引物和RACE方法, 在南蛇藤(Celastrus orbiculatus)中克隆了1个脯氨酸脱氢酶基因, 并命名为NstProDH1。序列比对显示该基因与拟南芥(Arabidopsis thaliana)和烟草(Nicotiana tabacum)的脯氨酸脱氢酶(ProDH)具有很高的同源性。酶学特性分析表明该酶具有脯氨酸脱氢酶的活性。比较南蛇藤不同器官该基因的转录表达模式与脯氨酸脱氢酶活性, 结果显示两者之间没有明显的关联, 说明该基因的表达受到转录和翻译水平的双重调控, 同时也暗示南蛇藤中还存在其它的脯氨酸脱氢酶基因。NstProDH1基因的表达模式与野生型拟南芥中的ProDH1具有相似性, 因此推测NstProDH1基因可能在功能上与拟南芥ProDH1基因相似。
We cloned a proline dehydrogenase gene from Celastrus orbiculatus using degenerate primers and RACE and named it NstProDH1. Sequence alignment showed that NstProDH1 has high sequence similarity with corresponding genes from Arabidopsis and tobacco. Enzymatic characteristic analysis identified the activity of proline dehydrogenase. Comparison of gene expression patterns and proline dehydrogenase activity were not associated in different organs, so NstProDH1 was regulated by transcription and translation. The gene expression pattern of NstProDH1 was similar to that of Arabidopsis ProDH1, therefore NstProDH1 may be functionally similar to Arabidopsis ProDH1.
罗雯,刘阳(2006). 根癌农杆菌转化条件优化的研究. 生物技术 16, 41-43.
全先庆, 张渝洁, 单雷, 毕玉平 (2007). 脯氨酸在植物生长和非生物胁迫耐受中的作用. 生物技术通讯 18, 159-162.
王若梦, 董宽虎(2012). NaCl胁迫对苦马豆苗期脯氨酸代谢的影响. 草地学报20, 705-710.
徐学敏(2011). 垂直绿化植物——南蛇藤的园林用途及培育. 中国林副特产 4, 62-63.
张华, 员林, 钱亚云, 侯莹, 郭试瑜, 久光正, 刘延庆(2011). 南蛇藤提取物含药血清对人肝癌SMMC 7721 细胞增殖, 迁移和黏附作用的影响. 南京中医药大学学报 27, 44-48.
张舰, 许运明, 王维民, 刘延庆(2006). 南蛇藤提取物体内抗肿瘤作用的实验研究.中国中药杂志 31, 1514-1516.
张娜, 黄韫宇, 冯洁, 刘莉莎, 杨鹏, 赵冰*, 郭仰东(2011). 甘蓝脯氨酸脱氢酶基因克隆与RNAi 表达载体构建. 中国农业大学学报 16, 87- 94.
张树俭, 韩明福(2009). 南蛇藤播种育苗技术. 吉林林业科技38, 46-47.
赵福庚, 孙诚, 刘友良, 章文华, 刘兆普(2002). ABA 和 NaCl 对碱蓬多胺和脯氨酸代谢的影响. 植物生理与分子生物学学报 28, 117-120.
职明星,李秀菊(2005). 脯氨酸测定方法的改进. 植物生理学通讯 4, 355-357.
Ashraf M, Harris PJC(2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166, 3-16.
Chiang HH, Dandekar AM (1995). Regulation of proline accumulation in Arabidopsis thaliana (L) Heynh during development and in response to desiccation. Plant Cell Environ 18, 1280–1290.
Delauney AJ, Verma DPS (1993). Proline biosynthesis and osmoregulation in plants. Plant J 4, 215-223.
Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, Graaff E van der, Kunze R, Frommer WB(2004). The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16, 3413-3425.
Funck D, Eckard S, Müller G (2010). Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis.BMC. plant boil 10, 70.
Hare PD, Cress WA (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21, 79-102.
Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009). The SWISS-MODEL Repository and associated resources. Nuleic Acids Res 37, D387-D392.
Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K., Shinozaki K(1996). A Nuclear Gene Encoding Mitochondrial Proline Dehydrogenase, an Enzyme lnvolved in Proline Metabolism, is Upregulated by Proline but Downregulated by Dehydration in Arabidopsis. The Plant Cell 8, 1323-1335.
Mattioli R, Falasca G, Sabatini S, Altamura MM, Costantino P, Trovato M(2009). The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physio. Plant 137, 72-85.
Matysik J, Bhalu BA(2002). Molecular mechanisms of quenching of reactive oxygen spcies by proline understress in plants. Curr Sci 82, 525-532.
Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. Planta 222, 70-79.
Miller G, Stein H, Honig A, Kapulnik Y, Zilberstein A(2005). Responsi ve modes of Szabados L(1997). Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12, 557-569.
Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K(1998). A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118, 1233-1241.
Phang JM, Donald SP, Pandhare J, Liu Y(2008). The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35, 681-690.
Rayapati PJ, Stewart CR, Hack E(1989). Pyrroline-5-Carboxylate Reductase Is in Pea (Pisum sativum L.) Leaf Chloroplasts. Plant Physio 91, 581-586.
Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, ouraev A(2007). Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225, 1313-1324.
Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L(1997). Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12, 557-569.
Szabados L, Savoure A (2010). Proline: a multifunctional amino acid. Trends Plant Sci 15, 89-97.
Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E(2008). Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53, 11-28.
Verbruggen N, Hermans C(2008). Proline accumulation in plants: a review. Amino acids 35, 753-759.
Verbruggen N, Villarroel R, Van Montagu M (1993). Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103, 771–781.