[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
专题论坛

生长素与乙烯信号途径及其相互关系研究进展

展开
  • 1南京农业大学资源与环境科学学院, 南京 210095;
    2山东省农业科学院高新技术研究中心, 山东省作物与畜禽品种改良生物技术重点实验室, 济南 250100;
    3农业部黄淮海作物遗传改良与生物技术重点开放实验室, 济南 250100

收稿日期: 2010-08-25

  修回日期: 2011-01-23

  网络出版日期: 2011-05-26

基金资助

南京农业大学作物遗传与种质创新国家重点实验室开放课题

Research Advances in Auxin and Ethylene Signaling and Effects of Auxin on Ethylene Response of Plants

Expand
  • 1College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

    2Key Laboratory for Genetic Improvement of Crop, Animal and Poultry of Shandong Province, High-tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China

    3Key Laboratory of Crop Genetic Improvement and Biotechnology, Huanghuaihai, Ministry of Agriculture, Jinan 250100, China

Received date: 2010-08-25

  Revised date: 2011-01-23

  Online published: 2011-05-26

摘要

长期的研究表明, 生长素在调节植物生长发育的各种生理活动中起关键作用, 但对它如何调控这些生理活动却缺乏系统和深入的了解。最近, 细胞核内生长素信号途径的发现为揭示其作用机制带来了曙光。乙烯参与果实成熟及植物对逆境的反应等生理活动, 其信号途径也已得到部分阐明。越来越多的证据表明, 乙烯的作用与生长素对植物生长发育的调控之间有密切的联系。该文概述了生长素与乙烯信号途径的研究进展及其相互关系, 讨论了生长素在植物三重反应中的作用; 并对生长素与乙烯相互关系研究中存在的问题及研究前景进行了探讨。

本文引用格式

胡一兵, 刘炜, 徐国华 . 生长素与乙烯信号途径及其相互关系研究进展[J]. 植物学报, 2011 , 46(3) : 338 -349 . DOI: 10.3724/SP.J.1259.2011.00338

Abstract

Auxin has long been identified to play a critical role in regulating various activities of plant growth and development. However, systematic and in-depth understanding of these regulations is still lacking. Recently, the verification of the nucleic auxin signaling pathway has thrown light on research in this field. The hormone ethylene is involved in fruit ripening and the stress response of plants; its signaling pathway has been partially elucidated. Increasing data show that the effects of ethylene on plants are largely connected to the participation of auxin. In this review, we summarize the research advances in auxin and ethylene signaling and discuss the role of auxin in the triple response of ethylene. Difficulties in unraveling their relationship and possible ways of resolving them are also proposed.
[an error occurred while processing this directive]

参考文献

安丰英,郭红卫 (2006)。 乙烯信号转导的分子机制。 植物学通报 23: 531-542。
李俊华,种康(2006)。 植物生长素极性运输机理的研究进展。植物学通报 23: 466 -477。
马彪,陈受宜,张劲松(2010)。水稻乙烯信号转导。科学通报 55:1438-1445。
倪为民,陈晓亚,许智宏,薛红卫(2000)。生长素极性运输研究进展。植物学报42:221-228。
王冰,李家洋,王永红(2006)。生长素调控植物株型形成的研究进展。植物学通报23:443-458。
Abel S, Theologis A (1996). Early genes and auxin action. Plant Physiol 111:9-17.
Abeles FB, Morgan PW, Saltveit JME (1992). Ethylene in Plant Biology. 2nd edition (San Diego: Academic Press).
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003). A gene expression map of the Arabidopsis root. Science 302:1956-1960.
Bruinsma J, Hasegawa K (1990). A new theory of phototropism– its regulation by a light-induced gradient of auxin-inhibiting substances. Physiol Plant 79: 700-704.
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G and Friml J (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591-602.
Burg SP, Burg EA (1966). Auxin-induced ethylene formation: its relation to flowering in the pineapple. Science152:1269.
Boutté Y, Ikeda Y, Grebe M (2007). Mechanisms of auxin-dependent cell and tissue polarity. Curr Opin Plant Biol 10:616-623.
Chow B, McCourt P (2006). Plant hormone receptors: perception is everything. Genes Dev 20:1998-2008.
Crocker W, Hitchcock AE, Zimmerman PW (1935). Similarities in the effects of ethylene and the plant auxins. Contrib. Boyce Thompson Inst 7:231-248.
Cohen JD, Slovin JP and Hendrickson AM (2003). Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8:197-199.
Davies PJ (2004). Plant Hormones: Biosynthesis, Signal Transduction, Action! (London: Kluwer Academic Publishers).
De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennett MJ, Beeckman T (2007). Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681-690.
Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006). A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci U S A 103:236-241.
Franklin KA (2008). Shade avoidance. New Phytol 179:930-944.
Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002). AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661-673.
Friml J, Vieten, Sauer M, Weijers D, Schwarz, Hamann T, Offringa R, gens G (2003). efflux-dependent auxin gradients establish the apicalbasalaxis of Arabidopsis. Nature 426:147-153.
Gao Z, Schaller GE (2009). The role of receptor interactions in regulating ethylene signal transduction. Plant Signal Behav 4:1152-1153.
Ganguly A, Lee SH, Cho M, Lee OR, Yoo H, Cho HT. 2010 Differential Auxin-Transporting Activities of PIN-FORMED Proteins in Arabidopsis Root Hair Cells. Plant Physiol. May 3. [Epub ahead of print]
Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF, Smith AP, Baroux C, Grossniklaus U, Müller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179-194.
Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Hofte H (1997). Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114: 295-305.
Guzman P and Ecker JR (1990). Exploiting the triple response of Arabídopsís to identify ethylene-related mutants. Plant Cell 2:513-523.
Guilfoyle TJ, Hagen G (2007). Auxin response factors. Curr Opin Plant Biol 10:453-460.
Guo H, Ecker JR (2004). The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40-49.
Holm RE, Abeles FB (1968). The role of ethylene in 2.4-D-induced growth inhibition. Planta 78:293-304.
Hu Y, Zhao L, Chong K, Wang T (2008). Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. J Plant Physiol 165:1717-1725
Hu Y, Chang C, Wang T and Xu G (2010). Light restored root growth of Arabidopsis with constitutive ethylene response. APP.
Jensen PJ, Hangarter RP, Estelle M (1998). Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116: 455 -462.
Kerk NM, Jiang K, Feldman LJ (2000). Auxin metabolism in the root apical meristem. Plant Physiol 122:925-32.
Kepinski S and Leyser O (2005a). Plant development: auxin in loops. Curr Biol 15:208-210.
Kepinski S and Leyser O (2005b). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446-451.
Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427-441.
Lamport DTA (1967). Hydroxyproline-O-glycosidic Linkage of the Plant Cell Wall Glycoprotein Extensin. Nature 216:1322 -1324.
Laxmi A, Pan J, Morsy M, Chen R (2008). Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis Thaliana. PLoS One 3:e 1510
Lau S, Jürgens G, De Smet I (2008). The evolving complexity of the auxin pathway.Plant Cell 20:1738-1746.
Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP (2001). In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol 125:519-522.
Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004). Convergence of signalling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193-204.
Liu C, Xu Z, Chua NH (1993). Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621-630.
Lomax TL, Muday GK, Rubery PH (1995). Auxin transport in plant hormones: Physiology, Biochemistry and Molecular Biology PJ. Davies ed.(Dordrecht: Kluwer Press), pp.509-530.
Maraschin FS, Memelink J, Offringa R (2009). Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59:100-109.
Mockaitis K, Estelle M (2008). Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55-80.
Pickett FB, Wilson AK, Estelle M (1990). The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462-1466.
Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J and Kuhlemeier C (2003). Regulation of phyllotaxis by polar auxin transport. Nature 426:255-260.
Reinhardt D (2003). Vascular patterning: more than just auxin? Curr Biol 13: R485-R487.
Romano CP, Cooper ML, Klee HJ (1993). Uncoupling Auxin and Ethylene Effects in Transgenic Tobacco and Arabidopsis Plants. Plant cell 5: 181-189.
Rubery and Sheldrake AR (1974). Carrier-mediated auxin transport. Planta 118:101-121.
R?zicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19: 2197-2212.
Salmon J, Ramos J, Callis J (2008). Degradation of the auxin response factor ARF1. Plant J 54:118-128.
Shishova M, Lindberg S (2010). A new perspective on auxin perception. J Plant Physiol 167:417-422.
Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007). The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440-2453.
Silk WK, Erickson RO (1979). Kinematics of plant growth. J Theor Biol 76: 481-501.
Sorefan K, Girin T, Liljegren SJ, Ljung K, Robles P, Galván-Ampudia CS, Offringa R, Friml J, Yanofsky MF, ?stergaard L (2009). A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459:583-586.
Solano R, Stepanova A, Chao Q, Ecker JR (1998). Nuclear events in ethylene signalling: a transcriptional cascade mediated by ethylene-insensitive3 and ethylene-response-factor1. Genes & Dev 12: 3703-3714.
Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005). A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant cell 17: 2230-2242.
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177-191.
Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 2186-2196.
Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008). The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946-954.
Steffens B, Feckler C, Palme K, Christian M, Bottger M and Luthen H (2001). The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J 27:591-599.
Szemenyei, H., Hannon, M., and Long, J.A. (2008). TOPLESS mediates auxindependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384-1386.
Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006). Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738-2754.
Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008). Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164-176.
Tromas A, Perrot-Rechenmann C (2010). Recent progress in auxin biology. C R Biol 333:297-306.
Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963-1971.
Ulmasov T, Hagen G and Guilfoyle TJ (1999). Dimerization and DNA binding of auxin response factors. Plant J 19:309-319.
Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJ, Harren FJ, Van Der Straeten D (2003a). Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol 133:517-527.
Vandenbussche F, Smalle J, Le J, Saibo NJ, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJ, Harren FJ, Van Onckelen H, Palme K, Verbelen JP, Van Der Straeten D (2003b). The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131:1228-1238.
Vandenbussche F, Petrásek J, Zádníková P, Hoyerová K, Pesek B, Raz V, Swarup R, Bennett M, Zazímalová E, Benková E, Van Der Straeten D (2010).The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597-606.
Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204-2216.
Wisniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006). Polar PIN localization directs auxin flow in plants. Science 312(5775):883.
Weijers D, Friml J (2009). SnapShot: Auxin signaling and transport. Cell 136:1172, 1172.e1.
Yoo SD, Cho Y, Sheen J (2009). Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270-279.
Zhong SW, Zhao MT, Shi TY, Shi H, An FY, Zhao Q, Guo HW (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA 106:21431-21436.
文章导航

/

[an error occurred while processing this directive]