小檗科十大功劳属是典型的东亚-北美洲际间断分布属, 在北半球新生代地层中有丰富的叶化石记录, 叶结构特征特殊, 易与其他被子植物类群区分, 有潜力成为一个独特的生物代用指标或模式植物, 用于追踪东亚北美物种间断分布格局形成过程。传统分类依据叶结构特征将十大功劳属下分为掌状脉的东方组和羽状脉的西方组。这里, 我们在前人基础上依托详细的叶结构特征将该属进一步细分为东方组下的7个叶片类型(Microphylla类型、Japonica类型、Cardiophylla类型、Bodinieri类型、Polyodonta类型、Fortunei类型和Nervosa类型)和西方组下的6个叶片类型(Chochoco类型、Dictyota类型、Volcania类型、Pumila类型、Lanceolata类型和Aquifolium类型)。新建的十大功劳属叶结构分型体系将有极大潜力服务于该属化石叶的分型及追踪其叶形态演化和洲际间断分布式样的形成研究。
赵白龙
,
李业亮
,
Yu-Fei Wang
,
孙斌
. 十大功劳属(小檗科)的叶结构分型新体系[J]. 植物学报, 0
: 1
-0
.
DOI: 10.11983/CBB24149
The genus Mahonia of the Berberidaceae family exemplifies a typical East Asia-western North America (EA/WNA) disjunction taxon, characterized by an extensive record of leaf fossils in Cenozoic strata across the Northern Hemisphere. The leaf architecture of Mahonia is distinctive and readily distinguishable from those of other angiosperm groups, positioning it as a potential unique biological proxy or model plant for investigating the formation processes underlying the intercontinental discontinuity between East Asia and North America. Traditionally, taxonomists have divided the genus into Group Orientales with palmate venation and Group Occidentales with pinnate venation based on venation. Here, we build upon previous research to further refine this classification by identifying 7 leaf types within Group Orientales (Microphylla type, Japonica type, Cardiophylla type, Bodinieri type, Polyodonta type, Fortunei type, and Nervosa type) and 6 leaf types in Group Occidentales (Chochoco type, Dictyota type, Volcania type, Pumila type, Lanceolata type, and Aquifolium type) based on detailed leaf structure. The newly established leaf structure classification system holds significant promise for future endeavors in classifying and identifying fossil leaves of the genus Mahonia. Additionally, it will facilitate studies concerning its morphological evolution and biogeographic history.
[an error occurred while processing this directive]
Ahrendt LWA (1961). Berberis and Mahonia. A taxonomic revision. Bot J Linn Soc 57(369): 1-410
Chen X-H, Xiang K-L, Lian L, Peng H-W, Erst AS, Xiang X-G, Chen Z-D, Wang W (2020). Biogeographic diversification of Mahonia (Berberidaceae): Implications for the origin and evolution of East Asian subtropical evergreen broadleaved forests. Mol Phylogenet Evol 151: 106910
Doweld AB (2018). New names of fossil Berberidaceae. Phytotaxa 351(1): 72-80
Feijó A, 葛德燕, 温知新, 程继龙, 夏霖, 杨奇森 (2021). 利用R软件在GBIF网站下载和筛选物种分布记录并提取气候数据进行分析. Bio-101: 1010609
Group TAP (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1): 1-20
Güner TH, Denk T (2012). The genus Mahonia in the Miocene of Turkey: Taxonomy and biogeographic implications. Rev Palaeobot Palynol 175: 32-46
Hsieh C-L, Yu C-C, Huang Y-L, Chung K-F (2022). Mahonia vs. Berberis Unloaded: Generic Delimitation and Infrafamilial Classification of Berberidaceae Based on Plastid Phylogenomics. Front Plant Sci 12(2532)
Hu Q, Huang J, Chen YF, Manchester SR (2017). Mahonia fossils from the Oligocene of South China: Taxonomic and biogeographic implications. Palaeoworld 26: 691-698
Huang J, Su T, Julie L-A, Zhang ST, Zhou ZK (2016). The oldest Mahonia (Berberidaceae) fossil from East Asia and its biogeographic implications. J Plant Res 129(2): 209-223
Kayseri MS (2010). Oligo-miocene palynology, palaeobotany, vertebrate, marine faunas, palaeoclimatology and palaeovegetation of the ?ren basin (North of the G?kova Gulf), Western Anatolia. [D]. The Republic of Türkiye: Dokuz Eylül University. pp. 1-569.
Kva?ek Z, Teodoridis V (2019). A putative Australian element in the European Miocene re-investigated – Mahonia exulata (UNGER) KVA?EK & TEODORIDIS comb. nov. et emend. N Jb Geol Palaontol Abh 293(2): 139-143
Kvacek Z, Teodoridis V, Roiron P (2011). A forgotten Miocene mastixioid flora of Arjuzanx (Landes, SW France). Palaeontogr Abt B Stuttg 285(1): 3-111
Mai DH, Walther H (1988). Die plioznen Floren von Thüringen, Deutsche Demokratische Republik. Quart?rpal?ontol 7: 55-242
Manchester S (2001). Update on the megafossil flora of Florissant, Colorado. Denver Museum of Nature & Science 4: 137-161
Manchester SR (2000). Late Eocene fossil plants of the John Day Formation, Wheeler County, Oregon. Oregon Geology 62: 51-63
Postigo-Mijarra JM, Barrón E, DiéGuez C (2014). The late Miocene macroflora of the La Cerdanya Basin (Eastern Pyrenees, Spain): towards a synthesis. Palaeontogr Abt B Palaeophytol 291: 85-129
Tang D-L, Wang Z-E, Ding H, Huang Y-T, Ding S-T, Wu J-Y (2022). New discovery of Mahonia fossils from the Pliocene of Yunnan, China, and its biogeographical significance. Hist Biol 35(12): 2435-2448
Ying J, Boufford D, Brach A (2011). Berberidaceae.Beijing: Science Press.772-782
Yu C-C, Chung K-F (2017). Why Mahonia ? Molecular recircumscription of Berberis s.l., with the description of two new genera, Alloberberis and Moranothamnus. Taxon 66(6): 1371-1392
武建勇 (2008). 国产十大功劳属植物的分类学修订. 博士论文. 北京: 中国科学院植物研究所. pp. 1-105.