[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
专题论坛

植物NAD(P)+的生物合成及其生物学功能研究进展

  • 胡海涛 ,
  • 武越 ,
  • 杨玲
展开
  • 浙江师范大学生命科学学院, 金华 321004

收稿日期: 2024-09-19

  录用日期: 2024-10-30

  网络出版日期: 2024-10-31

基金资助

浙江省自然科学基金(LY19C130003)

Research Progress on the NAD(P)+ Biosynthesis and Function in Plants

  • Haitao Hu ,
  • Yue Wu ,
  • Ling Yang
Expand
  • College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China

Received date: 2024-09-19

  Accepted date: 2024-10-30

  Online published: 2024-10-31

摘要

烟酰胺腺嘌呤二核苷酸(NAD+)和烟酰胺腺嘌呤二核苷酸磷酸(NADP+)是植物核心能量代谢、生长发育以及胁迫应答的整合者, 可直接或间接影响多种关键的细胞功能。作为细胞代谢的基石, 胞内NAD(P)+稳态对于维持植物正常能量代谢、生长发育和胁迫应答至关重要。NAD(P)+的合成受损或缺乏将引发植物细胞代谢紊乱和一系列缺陷表型, 严重时甚至导致植物死亡。目前, 植物中NAD(P)+的合成途径及其关键酶已比较明确, 但其在植物体内的稳态调控以及协调植物生长与胁迫应答的机制尚不清楚。因此, 研究植物细胞内NAD(P)+稳态的调节机制及其平衡植物生长与胁迫应答的分子机理具有重要意义。该文综述了植物NAD(P)+的生物合成代谢途径, 重点阐述了NAD(P)+参与调节植物生长发育和胁迫应答过程, 并展望了植物NAD(P)+的研究前景。

本文引用格式

胡海涛 , 武越 , 杨玲 . 植物NAD(P)+的生物合成及其生物学功能研究进展[J]. 植物学报, 2025 , 60(1) : 114 -131 . DOI: 10.11983/CBB24144

Abstract

Nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+) act as an integral regulator of plant core energy metabolism, growth and development, and stress response, which can directly and indirectly influence many key cellular functions. As the cornerstone of cell metabolism, NAD(P)+ homeostasis is crucial for normal plant growth and development, and stress response. Impaired synthesis of NAD(P)+ or deficiency can trigger metabolic disorders and a series of defective phenotypes, and may even lead to plant death in severe cases. Currently, NAD(P)+ biosynthesis pathway and its key enzymes have been well studied in plants, but its homeostatic regulation in plants and the mechanism of coordinating plant growth and stress response are still unclear. Therefore, isolating NAD(P)+ deficiency-related mutants is crucial for exploring the regulatory mechanisms of NAD(P)+ homeostasis and its balancing in plant growth and stress response. This review summarizes the biosynthetic metabolic pathways of plant NAD(P)+, focuses on the participation of NAD(P)+ in plant growth and stress response processes, and looks into the future on the research prospects of NAD(P)+ in plants.

[an error occurred while processing this directive]

参考文献

[1] Aghdam MS, Palma JM, Corpas FJ (2020). NADPH as a quality footprinting in horticultural crops marketability. Trends Food Sci Technol 103, 152-161.
[2] Ahmad Z, Bashir K, Matsui A, Tanaka M, Sasaki R, Oikawa A, Hirai MY, Chaomurilege, Zu YH, Kawai-Yamada M, Rashid B, Husnain T, Seki M (2021). Overexpression of nicotinamidase 3 (NIC3) gene and the exogenous application of nicotinic acid (NA) enhance drought tolerance and increase biomass in Arabidopsis. Plant Mol Biol 107,63-84.
[3] Alferez FM, Gerberich KM, Li JL, Zhang YP, Graham JH, Mou ZL (2018). Exogenous nicotinamide adenine dinucleotide induces resistance to citrus canker in citrus. Front Plant Sci 9, 1472.
[4] Alipour S, Wojciechowska N, Stolarska E, Bilska K, Kalemba EM (2020). NAD(P)-driven redox status contributes to desiccation tolerance in Acer seeds. Plant Cell Physiol 61, 1158-1167.
[5] Barreto P, Koltun A, Nonato J, Yassitepe J, de Godoy Maia I, Arruda P (2022). Metabolism and signaling of plant mitochondria in adaptation to environmental stresses. Int J Mol Sci 23, 11176.
[6] Berrin JG, Pierrugues O, Brutesco C, Alonso B, Montillet JL, Roby D, Kazmaier M (2005). Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol Genet Genomics 273, 10-19.
[7] Briggs AG, Bent AF (2011). Poly(ADP-ribosyl)ation in plants. Trends Plant Sci 16, 372-380.
[8] Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005). A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438, 1013-1016.
[9] Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC (2005). NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol 59, 553-564.
[10] Colinas M, Shaw HV, Loubéry S, Kaufmann M, Moulin M, Fitzpatrick TB (2014). A pathway for repair of NAD(P)H in plants. J Biol Chem 289, 14692-14706.
[11] de Souza Chaves I, Feitosa-Araújo E, Florian A, Medeiros DB, da Fonseca-Pereira P, Charton L, Heyneke E, Apfata JAC, Pires MV, Mettler-Altmann T, Araújo WL, Neuhaus HE, Palmieri F, Obata T, Weber APM, Linka N, Fernie AR, Nunes-Nesi A (2019). The mitochondrial NAD+ transporter (NDT1) plays important roles in cellular NAD+ homeostasis in Arabidopsis thaliana. Plant J 100, 487-504.
[12] Dong HJ, Wang XF, Tan C, Gao L, Cui J, Liu L, Mo BX, Xing YZ, Yu Y, Chen XM (2022). NAD+-capped RNAs are widespread in rice (Oryza sativa) and spatiotemporally modulated during development. Sci China Life Sci 65, 2121-2124.
[13] Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013). Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci USA 110, 8744-8749.
[14] Durand M, Brehaut V, Clement G, Kelemen Z, Macé J, Feil R, Duville G, Launay-Avon A, Roux CPL, Lunn JE, Roudier F, Krapp A (2023). The Arabidopsis transcription factor NLP2 regulates early nitrate responses and integrates nitrate assimilation with energy and carbon skeleton supply. Plant Cell 35, 1429-1454.
[15] Feitosa-Araujo E, da Fonseca-Pereira P, Knorr LS, Schwarzl?nder M, Nunes-Nesi A (2022). NAD meets ABA: connecting cellular metabolism and hormone signaling. Trends Plant Sci 27, 16-28.
[16] Feitosa-Araujo E, da Fonseca-Pereira P, Pena MM, Medeiros DB, Perez de Souza L, Yoshida T, Weber APM, Araújo WL, Fernie AR, Schwarzl?nder M, Nunes- Nesi A (2020). Changes in intracellular NAD status affect stomatal development in an abscisic acid-dependent manner. Plant J 104, 1149-1168.
[17] Feng BM, Liu CL, de Oliveira MVV, Intorne AC, Li B, Babilonia K, de Souza Filho GA, Shan LB, He P (2015). Protein poly(ADP-ribosyl)ation regulates Arabidopsis immune gene expression and defense responses. PLoS Genet 11, e1004936.
[18] Fukuda Y, Ishiyama C, Kawai-Yamada M, Hashida SN (2023). Adjustment of light-responsive NADP dynamics in chloroplasts by stromal pH. Nat Commun 14, 7148.
[19] Gakière B, Hao JF, de Bont L, Pétriacq P, Nunes-Nesi A, Fernie AR (2018). NAD+ biosynthesis and signaling in plants. Crit Rev Plant Sci 37, 259-307.
[20] Gu ZY, Pan WY, Chen W, Lian QC, Wu Q, Lv ZY, Cheng X, Ge XC (2019). New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly(ADP-ribose) polymerase activity in response to DNA damage. BMC Plant Biol 19, 364.
[21] Hao JF, Pétriacq P, de Bont L, Hodges M, Gakière B (2018). Characterization of L-aspartate oxidase from Arabidopsis thaliana. Plant Sci 271, 133-142.
[22] Hashida SN, Itami T, Takahara K, Hirabayashi T, Uchimiya H, Kawai-Yamada M (2016). Increased rate of NAD metabolism shortens plant longevity by accelerating developmental senescence in Arabidopsis. Plant Cell Physiol 57, 2427-2439.
[23] Hashida SN, Itami T, Takahashi H, Takahara K, Nagano M, Kawai-Yamada M, Shoji K, Goto F, Yoshihara T, Uchimiya H (2010). Nicotinate/nicotinamide mononucleotide adenyltransferase-mediated regulation of NAD biosynthesis protects guard cells from reactive oxygen species in ABA-mediated stomatal movement in Arabidopsis. J Exp Bot 61, 3813-3825.
[24] Hashida SN, Kawai-Yamada M, Uchimiya H (2013a). NAD+ accumulation as a metabolic off switch for orthodox pollen. Plant Signal Behav 8, e23937.
[25] Hashida SN, Takahashi H, Kawai-Yamada M, Uchimiya H (2007). Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth. Plant J 49, 694-703.
[26] Hashida SN, Takahashi H, Takahara K, Kawai-Yamada M, Kitazaki K, Shoji K, Goto F, Yoshihara T, Uchimiya H (2013b). NAD+ accumulation during pollen maturation in Arabidopsis regulating onset of germination. Mol Plant 6, 216-225.
[27] Hashida SN, Takahashi H, Uchimiya H (2009). The role of NAD biosynthesis in plant development and stress responses. Ann Bot 103, 819-824.
[28] He HJ, Zhang YZ, Wen BB, Meng XG, Wang N, Sun MY, Zhang R, Zhao XH, Tan QP, Xiao W, Li DM, Fu XL, Chen XD, Li L (2022). PpNUDX8, a peach NUDIX hydrolase, plays a negative regulator in response to drought stress. Front Plant Sci 12, 831883.
[29] Hong YC, Wang Z, Shi HZ, Yao JJ, Liu X, Wang FX, Zeng L, Xie Z, Zhu JK (2020). Reciprocal regulation between nicotinamide adenine dinucleotide metabolism and abscisic acid and stress response pathways in Arabidopsis. PLoS Genet 16, e1008892.
[30] Hong YC, Yu ZJ, Zhou Q, Chen CY, Hao YQ, Wang Z, Zhu JK, Guo HW, Huang AC (2024). NAD+ deficiency primes defense metabolism via 1O2-escalated jasmonate biosynthesis in plants. Nat Commun 15, 6652.
[31] Huang LM, Sun QW, Qin FJ, Li C, Zhao Y, Zhou DX (2007). Down-regulation of a SILENT INFORMATION RE- GULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144, 1508-1519.
[32] Huang Y, Liu QC, Jibrin M, Mou ZL, Dufault N, Li YC, Zhang SA (2023). Evaluating nicotinamide adenine dinucleotide for its effects on halo blight of snap bean. Plant Dis 107, 675-681.
[33] Hunt L, Gray JE (2009). The relationship between pyridine nucleotides and seed dormancy. New Phytol 181, 62-70.
[34] Ishikawa K, Ogawa T, Hirosue E, Nakayama Y, Harada K, Fukusaki E, Yoshimura K, Shigeoka S (2009). Modulation of the poly(ADP-ribosyl)ation reaction via the Arabidopsis ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7, is involved in the response to oxidative stress. Plant Physiol 151, 741-754.
[35] Ishikawa K, Yoshimura K, Harada K, Fukusaki E, Ogawa T, Tamoi M, Shigeoka S (2010). AtNUDX6, an ADP-ribose/ NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling. Plant Physiol 152, 2000-2012.
[36] Jethva J, Lichtenauer S, Schmidt-Schippers R, Steffen- Heins A, Poschet G, Wirtz M, van Dongen JT, Eirich J, Finkemeier I, Bilger W, Schwarzl?nder M, Sauter M (2023). Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation st- ress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. New Phytol 238, 96-112.
[37] Ji DL, Li QX, Guo YJ, An WJ, Manavski N, Meurer J, Chi W (2022). NADP+ supply adjusts the synthesis of photosystem I in Arabidopsis chloroplasts. Plant Physiol 189, 2128-2143.
[38] Jia AL, Huang SJ, Ma SC, Chang XY, Han ZF, Chai JJ (2023). TIR-catalyzed nucleotide signaling molecules in plant defense. Curr Opin Plant Biol 73, 102334.
[39] Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JDG, Shirasu K, Menke F, Jones A, Zipfel C (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54, 43-55.
[40] Katoh A, Uenohara K, Akita M, Hashimoto T (2006). Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141, 851-857.
[41] Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K (2014). Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26, 1069-1080.
[42] Kaya H, Takeda S, Kobayashi MJ, Kimura S, Iizuka A, Imai A, Hishinuma H, Kawarazaki T, Mori K, Yamamoto Y, Murakami Y, Nakauchi A, Abe M, Kuchitsu K (2019). Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. Plant J 98, 291-300.
[43] Khan S, Pandey SS, Jyotshna, Shanker K, Khan F, Rahman LU (2017). Cloning and functional characterization of quinolinic acid phosphoribosyl transferase (QPT) gene of Nicotiana tabacum. Physiol Plant 160, 253-265.
[44] Kong L, Feng BM, Yan Y, Zhang C, Kim JH, Xu LH, Rack JGM, Wang Y, Jang JC, Ahel I, Shan LB, He P (2021). Noncanonical mono(ADP-ribosyl)ation of zinc finger SZF proteins counteracts ubiquitination for protein homeostasis in plant immunity. Mol Cell 81, 4591-4604.
[45] Le XH, Lee CP, Millar AH (2021). The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. Plant Cell 33, 2776-2793.
[46] Li BB, Wang X, Tai L, Ma TT, Shalmani A, Liu WT, Li WQ, Chen KM (2018). NAD kinases: metabolic targets controlling redox co-enzymes and reducing power partitioning in plant stress and development. Front Plant Sci 9, 379.
[47] Li Q, Zhou MX, Chhajed S, Yu FH, Chen SX, Zhang YP, Mou ZL (2023). N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nat Com- mun 14, 6848.
[48] Li W, Zhang FX, Chang YW, Zhao T, Schranz ME, Wang GD (2015). Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana. Plant Cell 27, 1907-1924.
[49] Li W, Zhang FX, Wu RR, Jia LJ, Li GS, Guo YL, Liu CM, Wang GD (2017). A novel N-methyltransferase in Arabidopsis appears to feed a conserved pathway for nicotinate detoxification among land plants and is associated with lignin biosynthesis. Plant Physiol 174, 1492-1504.
[50] Li WY, Wang X, Li R, Li WQ, Chen KM (2014). Genome-wide analysis of the NADK gene family in plants. PLoS One 9, e101051.
[51] Lindén P, Keech O, Stenlund H, Gardestr?m P, Moritz T (2016). Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labeling. J Exp Bot 67, 3123-3135.
[52] Liu XY, Wei W, Zhu WJ, Su LF, Xiong ZY, Zhou M, Zheng Y, Zhou DX (2017). Histone deacetylase AtSRT1 links metabolic flux and stress response in Arabidopsis. Mol Plant 10, 1510-1522.
[53] Ma MZ, Liu YF, Bai CM, Yong JWH (2021). The significance of chloroplast NAD(P)H dehydrogenase complex and its dependent cyclic electron transport in photosynthesis. Front Plant Sci 12, 661863.
[54] Maruta T, Ogawa T, Tsujimura M, Ikemoto K, Yoshida T, Takahashi H, Yoshimura K, Shigeoka S (2016). Loss- of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance. Sci Rep 6, 37432.
[55] Miwa A, Sawada Y, Tamaoki D, Yokota Hirai M, Kimura M, Sato K, Nishiuchi T (2017). Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Sci Rep 7, 6389.
[56] Mou ZL (2017). Extracellular pyridine nucleotides as immune elicitors in Arabidopsis. Plant Signal Behav 12, e1388977.
[57] Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009). The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184, 885-897.
[58] Munk SHN, Merchut-Maya JM, Adelantado Rubio A, Hall A, Pappas G, Milletti G, Lee M, Johnsen LG, Guldberg P, Bartek J, Maya-Mendoza A (2023). NAD+ regulates nucleotide metabolism and genomic DNA replication. Nat Cell Biol 25, 1774-1786.
[59] Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S (2009). Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. Plant J 57, 289-301.
[60] Ogawa T, Muramoto K, Takada R, Nakagawa S, Shigeoka S, Yoshimura K (2016). Modulation of NADH Levels by Arabidopsis nudix hydrolases, AtNUDX6 and 7, and the respective proteins themselves play distinct roles in the regulation of various cellular responses involved in biotic/abiotic stresses. Plant Cell Physiol 57, 1295-1308.
[61] Palmieri F, Rieder B, Ventrella A, Blanco E, Do PT, Nunes-Nesi A, Trauth AU, Fiermonte G, Tjaden J, Agrimi G, Kirchberger S, Paradies E, Fernie AR, Neuhaus HE (2009). Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem 284, 31249-31259.
[62] Pétriacq P, de Bont L, Hager J, Didierlaurent L, Mauve C, Guérard F, Noctor G, Pelletier S, Renou JP, Tcherkez G, Gakière B (2012). Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1. Plant J 70, 650-665.
[63] Pétriacq P, Ton J, Patrit O, Tcherkez G, Gakière B (2016). NAD acts as an integral regulator of multiple defense layers. Plant Physiol 172, 1465-1479.
[64] Regmi H, Abdelsamad N, DiGennaro P, Desaeger J (2021). Potential of nicotinamide adenine dinucleotide (NAD) for management of root-knot nematode in tomato. J Nematol 53, 1-11.
[65] Saito M, Konishi M, Miyagi A, Sakuraba Y, Kawai-Yamada M, Yanagisawa S (2022). Arabidopsis nitrate-induced aspartate oxidase gene expression is necessary to maintain metabolic balance under nitrogen nutrient fluctuation. Commun Biol 5, 432.
[66] Schippers JHM, Foyer CH, van Dongen JT (2016). Redox regulation in shoot growth, SAM maintenance and flowering. Curr Opin Plant Biol 29, 121-128.
[67] Smith EN, Schwarzl?nder M, Ratcliffe RG, Kruger NJ (2021). Shining a light on NAD- and NADP-based metabolism in plants. Trends Plant Sci 26, 1072-1086.
[68] Song W, Liu L, Yu DL, Bernardy H, Jirschitzka J, Huang SJ, Jia AL, Jemielniak W, Acker J, Laessle H, Wang JL, Shen QC, Chen WJ, Li PL, Parker JE, Han ZF, Schulze-Lefert P, Chai JJ (2024). Substrate-induced condensation activates plant TIR domain proteins. Nature 627, 847-853.
[69] Spechenkova N, Kalinina NO, Zavriev SK, Love AJ, Taliansky M (2023). ADP-ribosylation and antiviral resistance in plants. Viruses 15, 241.
[70] Steinbeck J, Fuchs P, Negroni YL, Els?sser M, Lich- tenauer S, Stockdreher Y, Feitosa-Araujo E, Kroll JB, Niemeier JO, Humberg C, Smith EN, Mai M, Nunes- Nesi A, Meyer AJ, Zottini M, Morgan B, Wagner S, Schwarzl?nder M (2020). In vivo NADH/NAD+ biosensing reveals the dynamics of cytosolic redox metabolism in plants. Plant Cell 32, 3324-3345.
[71] Su LF, Wang P, Li S, Cai Y, Guo DD, Liu Q, Liu XY (2023). Research progress in sirtuin protein family in plants. Chin Bull Bot 58, 998-1007. (in Chinese)
  苏鲁方, 王萍, 李顺, 蔡燕, 郭丹丹, 刘琴, 刘小云 (2023). 植物sirtuin蛋白家族研究进展. 植物学报 58, 998-1007.
[72] Sun X, Han GL, Meng Z, Lin L, Sui N (2019). Roles of malic enzymes in plant development and stress responses. Plant Signal Behav 14, e1644596.
[73] Suzuki S, Tanaka D, Miyagi A, Takahara K, Kono M, Chaomurilege, Noguchi K, Ishikawa T, Nagano M, Yamaguchi M, Kawai-Yamada M (2023). Loss of peroxisomal NAD kinase 3 (NADK3) affects photorespiration metabolism in Arabidopsis. J Plant Physiol 283, 153950.
[74] Sweetman C, Waterman CD, Rainbird BM, Smith PMC, Jenkins CD, Day DA, Soole KL (2019). AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress. Plant Physiol 181, 774-788.
[75] Tian HN, Wu ZS, Chen SY, Ao K, Huang WJ, Yaghmaiean H, Sun TJ, Xu F, Zhang YJ, Wang SC, Li X, Zhang YL (2021). Activation of TIR signaling boosts pattern-triggered immunity. Nature 598, 500-503.
[76] Wallstr?m SV, Florez-Sarasa I, Araújo WL, Escobar MA, Geisler DA, Aidemark M, Lager I, Fernie AR, Ribas- Carbó M, Rasmusson AG (2014). Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. Plant Cell Physiol 55, 881-896.
[77] Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, Chung EH, Nishimura EO, DiAntonio A, Milbrandt J, Dangl JL, Nishimura MT (2019). TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799-803.
[78] Wang CG, Huang XE, Li Q, Zhang YP, Li JL, Mou ZL (2019a). Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nat Commun 10, 4810.
[79] Wang CZ, Gao F, Wu JG, Dai JL, Wei CH, Li Y (2010). Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51, 1291-1299.
[80] Wang GD, Pichersky E (2007). Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J 49, 1020-1029.
[81] Wang P, Su LF, Cao L, Hu HB, Wan HP, Wu CH, Zheng Y, Bao C, Liu XY (2024a). AtSRT1 regulates flowering by regulating flowering integrators and energy signals in Arabidopsis. Plant Physiol Biochem 213, 108841.
[82] Wang X, Li BB, Ma TT, Sun LY, Tai L, Hu CH, Liu WT, Li WQ, Chen KM (2020). The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC Plant Biol 20, 11.
[83] Wang XF, Yu DL, Yu JC, Hu H, Hang RL, Amador Z, Chen Q, Chai JJ, Chen XM (2024b). Toll/interleukin-1 receptor (TIR) domain-containing proteins have NAD-RNA decapping activity. Nat Commun 15, 2261.
[84] Wang Y, Li SF, Zhao YH, You CJ, Le B, Gong ZZ, Mo BX, Xia YJ, Chen XM (2019b). NAD+-capped RNAs are widespread in the Arabidopsis transcriptome and can probably be translated. Proc Natl Acad Sci USA 116, 12094-12102.
[85] Wang YF, Liu C, Qin YY, Du YY, Song C, Kang ZS, Guo J, Guo J (2024c). Stripe rust effector Pst03724 modulates host immunity by inhibiting NAD kinase activation by a calmodulin. Plant Physiol 195, 1624-1641.
[86] Wei M, Zhuang Y, Li H, Li PH, Huo HQ, Shu D, Huang WZ, Wang SH (2020). The cloning and characterization of hypersensitive to salt stress mutant, affected in quinolinate synthase, highlights the involvement of NAD in stress-induced accumulation of ABA and proline. Plant J 102, 85-98.
[87] Wu BY, Li P, Hong XF, Xu CH, Wang R, Liang Y (2022). The receptor-like cytosolic kinase RIPK activates NADP- malic enzyme 2 to generate NADPH for fueling ROS production. Mol Plant 15, 887-903.
[88] Wu LW, Ren DY, Hu SK, Li GM, Dong GJ, Jiang L, Hu XM, Ye WJ, Cui YT, Zhu L, Hu J, Zhang GH, Gao ZY, Zeng DL, Qian Q, Guo LB (2016). Down-regulation of a nicotinate phosphoribosyltransferase gene, OsNaPRT1, leads to withered leaf tips. Plant Physiol 171, 1085-1098.
[89] Wu RR, Zhang FX, Liu LY, Li W, Pichersky E, Wang GD (2018). MeNA, controlled by reversible methylation of nicotinate, is an NAD precursor that undergoes long-distance transport in Arabidopsis. Mol Plant 11, 1264-1277.
[90] Zeng X, Li YF, Mahalingam R (2014). Arabidopsis nudix hydrolase 7 plays a role in seed germination. Planta 239, 1015-1025.
[91] Zhang H, Zhao Y, Zhou DX (2017). Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. Nucleic Acids Res 45, 12241-12255.
[92] Zhang QQ, Tian SL, Chen GY, Tang QM, Zhang YJ, Fleming AJ, Zhu XG, Wang P (2024). Regulatory NADH dehydrogenase-like complex optimizes C4 photosynthetic carbon flow and cellular redox in maize. New Phytol 241, 82-101.
[93] Zhang XD, Mou ZL (2009). Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant J 57, 302-312.
[94] Zhang XD, Mou ZL (2012). Expression of the human NAD(P)-metabolizing ectoenzyme CD38 compromises sy- stemic acquired resistance in Arabidopsis. Mol Plant Mi- crobe In 25, 1209-1218.
[95] Zhao YN, Luo LL, Xu JS, Xin PY, Guo HY, Wu J, Bai L, Wang GD, Chu JF, Zuo JR, Yu H, Huang X, Li JY (2018). Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res 28, 448-461.
[96] Zhao YN, Yu H, Zhou JM, Smith SM, Li JY (2020). Malate circulation: linking chloroplast metabolism to mitochondrial ROS. Trends Plant Sci 25, 446-454.
[97] Zheng WP (2020). Review: the plant sirtuins. Plant Sci 293, 110434.
文章导航

/

[an error occurred while processing this directive]