%A Yongmei Wu, Xue Mao, Shujian Wang, Jinai Xue, Xiaoyun Jia, Jiping Wang, Zhirong Yang, Runzhi Li %T Systematic Metabolic Engineering of ω-7 Fatty Acids in Plants %0 Journal Article %D 2011 %J Chinese Bulletin of Botany %R 10.3724/SP.J.1259.2011.00575 %P 575-585 %V 46 %N 5 %U {https://www.chinbullbotany.com/CN/abstract/article_2979.shtml} %8 2011-09-01 %X Omega-7(ω-7) fatty acids (FAs) such as C16:1Δ9, C18:1Δ11 and C20:1Δ13, particularly palmitoleate (C16:1Δ9), are an important contributor to human health and are highly valued in pharmaceutical and industrial applications. A number of natural wild plants can synthesize high levels of these unusual FAs in seeds, but low yields and poor agronomic properties of those plants preclude their commercial use for ω-7 FA production. The lipid metabolic pathway has been genetically modified to develop engineered common oil crops that can highly produce and accumulate ω-7 FAs in seeds and represents a key hot-spot in biotechnology and renewable bio-based resources. The major targets for modification in the oil biosynthesis pathway include expression of various Δ9 desaturases, increasing substrate (C16:0) levels, co-expression of plastidial and endoplasmic reticulum Δ9 desaturases and optimizing the metabolic flux into triacylglycerols (TAGs). Here, we summarize our current understanding of ω-7 FA biosynthesis and its regulation and describe the advances in ω-7 FA metabolic engineering. We also discuss the current “bottleneck” in this field and potential breakthroughs by combining lipidomics, transgenics and other “-omics”. These new tools will provide a valued platform for mining genes involved in ω-7 FA biosynthesis and regulation. With this knowledge, we will develop more rational designs for metabolically engineering the commercial production of ω-7 FA in established oilseeds for human health and sustainable development of the related industry.