Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (6): 756-763.doi: 10.11983/CBB16248

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Seasonal Variation of N and P Stoichiometric Characteristics in Leaves of Certain Ephemeral Plants in the Gurbantunggut Desert, China

Liu Jianguo1,2, Liu Weiguo1,2,*(), Zhu Yuanyuan3, Huo Jusong1,2, Maria∙Nurlan1,2   

  1. 1College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, China
    2Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
    3Gansu Normal University for Nationalities, Hezuo 747000, China
  • Received:2016-12-15 Accepted:2017-05-07 Online:2018-02-22 Published:2017-11-01
  • Contact: Liu Weiguo E-mail:wgliuxj@126.com

Abstract:

Ephemeral plants are an important part of desert ecosystems. To understand the stoichiometric characteristics of leaf N and P in growth season variation, we compared plant leaf N and P with seasonal variation among 6 main species of ephemeral plants in the Gurbantunggut Desert in China, including 3 species of annual ephemeral plants and 3 of perennial ephemeral plants: Erodium oxyrrhynchum, Nepeta micrantha, Alyssum linifolium, Eremurus chinensis, Scorzonera pusilla, and Soranthus meyeri. The mean N content for the 3 annual ephemeral species was (11.23±7.16), (14.11±6.38) and (10.85±6.14) mg·g-1 and mean P content was (2.82±0.73), (3.12±1.24) and (3.43±0.55) mg·g-1. The mean N content for the 3 perennial ephemeral species was (19.97±5.94), (15.08±4.01) and (17.94±9.03) mg·g-1 and mean P content was (3.55±0.83), (2.73±1.11) and (5.03±0.65) mg·g-1. The stoichiometric characteristics of leaf N-P differed during the growth of ephemeral plants. The content of N and P in each species was higher in the early growth stage than during other growing seasons. The content of N and P decreased with increasing leaf biomass in the growing season but increased in the late growth season. The relation among the elements at different life stages differed, with no significant difference in the relation between the elements of the same life stage, so it embodies the consistency of inter species.

Key words: ephemeral plants, stoichiometric characteristics, seasonal variation, life type

Figure 1

Relationship of contents between N and P (A, D), and relationship between N:P and contents of either N (B, E) or P (C, F) in six species of ephemerals"

Table 1

Contents of N, P and dynamics of N:P of six ephemeral plants in the growing season"

Month Element Erodium
oxyrrhynchum
Nepeta
micrantha
Alyssum
linifolium
Eremurus
chinensis
Scorzonera
pusilla
Soranthus
meyeri
April N (mg·g-1) 19.45±0.43 Aa 18.57±1.4 Aa 17.60±1.7 Aa 19.47±0.7 Ba 15.85±1.1 Ab 13.83±0.42 Bc
P (mg·g-1) 3.50±0.1 Aa 4.45±0.2 Ca 4.00±0.23 Ba 4.50±0.32 Aa 3.40±0.4 Ab 5.70±0.36 Ac
N:P 5.56±0.3 Aa 4.17±0.6 Ab 4.40±0.5 Ab 4.33±0.2 Ab 4.66±0.42 Ab 2.43±0.12 Ac
May N (mg·g-1) 7.95±0.64 Ba 6.80±1 Cb 5.60±1 Cb 26.15±1.1 Ac 18.65±2.25 Bd 28.30±1 Ac
P (mg·g-1) 2.05±0.4 Ba 2.00±0.1 Ba 2.90±0.1 Aa 2.95±0.7 Ba 1.45±0.4 Bb 4.40±0.1 Ac
N:P 3.88±0.15 Ba 3.40±0.5 Aa 1.93±0.3 Bb 8.86±0.2 Bc 12.86±0.5 Bd 6.43±0.23 Bc
June N (mg·g-1) 6.30±0.1 Ca 16.95±0.8 Bb 9.35±0.6 Bc 14.30±0.78 Cd 10.75±0.3 Ce 11.70±1 Be
P (mg·g-1) 2.90±0.5 Aa 2.90±0.2 Aa 3.40±0.3 Aa 3.20±0.14 Aa 3.35±0.1 Aa 5.00±0.1 Ab
N:P 2.17±0.2 Ca 5.84±0.4 Bb 2.75±0.2 Ca 4.47±0.52 Ab 3.21±0.12 Aa 2.34±0.3 Aa
[1] 鲍士旦 (2000). 土壤农化分析. 北京: 中国农业出版社. pp. 66-70.
[2] 李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学 31, 1716-1725.
[3] 李征, 韩琳, 刘玉虹, 安树青, 冷欣 (2012). 滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征. 植物生态学报 36, 1054-1061.
[4] 刘建国, 林喆, 刘卫国, 霍举颂 (2016). 短命植物叶片生源要素的化学计量特征及异速关系. 西北植物学报 36, 2291-2299.
[5] 毛祖美, 张佃民 (1994). 新疆北部早春短命植物区系纲要. 干旱区研究 11(3), 1-26.
[6] 牛得草, 李茜, 江世高, 常佩静, 傅华 (2013). 阿拉善荒漠区6种主要灌木植物叶片C:N:P化学计量比的季节变化. 植物生态学报 37, 317-325.
doi: 10.3724/SP.J.1258.2013.00031
[7] 任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学 28, 2665-2673.
doi: 10.3321/j.issn:0250-3301.2007.12.001
[8] 陶冶, 张元明 (2011). 3种荒漠植物群落物种组成与丰富度的季节变化及地上生物量特征. 草业学报 20(6), 1-11.
doi: 10.11686/cyxb20110601
[9] 陶冶, 张元明 (2015). 古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征. 应用生态学报 26, 659-665.
[10] 王凯博, 上官周平 (2011). 黄土丘陵区燕沟流域典型植物叶片C、N、P化学计量特征季节变化. 生态学报 31, 4985-4991.
[11] 王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报 28, 3937-3947.
doi: 10.3321/j.issn:1000-0933.2008.08.054
[12] 汪涛, 杨元合, 马文红 (2008). 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版) 44, 945-952.
doi: 10.3321/j.issn:0479-8023.2008.06.019
[13] 邬畏, 何兴东, 周启星 (2010). 生态系统氮磷比化学计量特征研究进展. 中国沙漠 30, 296-302.
[14] 吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报 34, 23-28.
doi: 10.3773/j.issn.1005-264x.2010.01.005
[15] 肖遥, 陶冶, 张元明 (2014). 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征. 植物生态学报 38, 929-940.
doi: 10.3724/SP.J.1258.2014.00087
[16] 杨惠敏, 王冬梅 (2011). 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报 20, 244-252.
doi: 10.11686/cyxb20110230
[17] 张立运, 陈昌笃 (2002). 论古尔班通古特沙漠植物多样性的一般特点. 生态学报 22, 1923-1932.
[18] 张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 (2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草业学报 18, 503-509.
doi: 10.11733/j.issn.1007-0435.2010.04.005
[19] 张元明, 聂华丽 (2011). 生物土壤结皮对准噶尔盆地5种荒漠植物幼苗生长与元素吸收的影响. 植物生态学报 35, 380-388.
doi: 10.3724/SP.J.1258.2011.00380
[20] 周晓兵, 张元明, 王莎莎, 张丙昌, 张静 (2011). 3种荒漠植物幼苗生长和光合生理对氮增加的响应. 中国沙漠 31, 82-89.
[21] Baldwin DS, Rees GN, Mitchell AM, Watson G, Williams J (2006). The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland.Wetlands 26, 455-464.
doi: 10.1672/0277-5212(2006)26[455:TSEOSO]2.0.CO;2
[22] Chen YN, Wang Q, Li WH, Ruan X (2007). Microbiotic crusts and their interrelations with environmental factors in the Gurbantonggut Desert, western China.Environ Geol 52, 691-700.
doi: 10.1007/s00254-006-0505-9
[23] Craine JM, Jackson RD (2010). Plant nitrogen and phosphorus limitation in 98 North American grassland soils.Plant Soil 334, 73-84.
doi: 10.1007/s11104-009-0237-1
[24] Craine JM, Morrow C, Stock WD (2008). Nutrient concentration ratios and co-limitation in south African grasslands.New Phytol 179, 829-836.
doi: 10.1111/nph.2008.179.issue-3
[25] Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland.New Phytol 196, 807-815.
doi: 10.1111/j.1469-8137.2012.04349.x pmid: 23005343
[26] Fernandez DP, Neff JC, Belnap J, Reynolds RL (2006). Soil respiration in the cold desert environment of the Colorado Plateau (USA): abiotic regulators and thre- sholds.Biogeochemistry 78, 247-265.
doi: 10.1007/s10533-005-4278-0
[27] Gilliam FS (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems.BioScience 57, 845-858.
doi: 10.1641/B571007
[28] Gorokhova E, Kyle M (2002). Analysis of nucleic acids in Daphnia: development of methods and ontogenetic variations in RNA-DNA content. J Plankton Res 24, 511-522.
doi: 10.1093/plankt/24.5.511
[29] Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytol 168, 377-385.
doi: 10.1111/j.1469-8137.2005.01530.x pmid: 16219077
[30] Han WX, Fang JY, Reich PB, Lan Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral ele- ments in plant leaves across gradients of climate, soil and plant functional type in China.Ecol Lett 14, 788-796.
doi: 10.1111/ele.2011.14.issue-8
[31] Huang JJ, Wang XH (2003). Leaf nutrient and structural characteristics of 32 evergreen broad leaved species.J East China Normal Univ (Nat Sci) (1), 92-97.
doi: 10.1023/A:1022289509702
[32] Kerkhoff AJ, Enquist BJ (2006). Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecol Lett 9, 419-427.
doi: 10.1111/j.1461-0248.2006.00888.x pmid: 16623727
[33] Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation.J Appl Ecol 33, 1441-1450.
doi: 10.2307/2404783
[34] Li X, Zhang LJ, Liu WS, Yang JM, Ma ZY (2007). On nutrient accumulation and distribution in plum tree as well as nutrient dynamic changes in plum leaves.Soils 39, 982-986.
[35] Liu GQ, Zhao SD, Wang H, Tu XN, Gong LQ (2001). Seasonal variation of growth and nutrient contents for pho- tosynthetic organ of the sharptooth oak stands.Acta Ecol Sin 21, 883-889.
[36] Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proc Natl Acad Sci USA 101, 11001-11006.
doi: 10.1073/pnas.0403588101 pmid: 15213326
[37] Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Prin- ceton: Princeton University Press. pp. 225-226.
[38] Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dong- ling Mountain region. Acta Phytoecol Sin 25, 76-82.
[39] Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007). Controls over foliar N:P ratios in tropical for- ests.Ecology 88, 107-118.
doi: 10.1890/0012-9658(2007)88[107:COFNRI]2.0.CO;2
[40] Whitford WG (2002). Ecology of Desert Systems. London: Academic Press. pp. 112.
[41] Yan Q, Lu JJ, He WS (2007). Succession character of salt marsh vegetation in Chongming Dongtan wetland.Chin J Appl Ecol 18, 1097-1101.
pmid: 17650865
[42] Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies.Acta Bot Sin 45, 1009-1018.
[43] Zhou XB, Zhang YM, Ji XH, Downing A, Serpe M (2011). Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China.Environ Exp Bot 74, 1-8.
doi: 10.1016/j.envexpbot.2010.12.005
[1] Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China [J]. Chin J Plan Ecolo, 2017, 41(7): 749-760.
[2] Yili Guo, Dongxing Li, Bin Wang, Kundong Bai, Wusheng Xiang, Xiankun Li. C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China [J]. Biodiv Sci, 2017, 25(10): 1085-1094.
[3] Xiang GU, Shi-Ji ZHANG, Wen-Hua XIANG, Lei-Da LI, Zhao-Dan LIU, Wei-Jun SUN, Xi FANG. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China [J]. Chin J Plan Ecolo, 2016, 40(10): 1064-1076.
[4] Yadong Xue,Fang Liu,Yuguang Zhang,Diqiang Li. Grouping behavior of wild camel (Camelus ferus) referred from video data of camera trap in Kumtag Desert [J]. Biodiv Sci, 2014, 22(6): 746-751.
[5] Xiaodong Jia,Xuehua Liu,Xingzhong Yang,Pengfeng Wu,Melissa Songer,Qiong Cai,Xiangbo He,Yun Zhu. Seasonal activity patterns of ungulates in Qinling Mountains based on camera-trap data [J]. Biodiv Sci, 2014, 22(6): 737-745.
[6] Rouxin Sun,Yanguo Wang,Guangshan Lian,Mao Lin. Distribution and community characteristics of planktonic copepods in the northwest coastal waters off Hainan Island [J]. Biodiv Sci, 2014, 22(3): 320-328.
[7] Yanyan Ma,Zizhong Yang,Ping Feng,Qiao Li. The influence of fire disturbance on the biotype structure and seasonal dynamics of ground-dwelling spider on Cangshan Mountain, Yunnan Province [J]. Biodiv Sci, 2014, 22(2): 208-215.
[8] DU Yan-Jun and MA Ke-Ping. Temporal and spatial variation of seedfall in a broad-leaved evergreen forest in Gutianshan Nature Reserve of Zhejiang Province, China [J]. Chin J Plan Ecolo, 2012, 36(8): 717-728.
[9] Yu Wang, Youyin Ye, Mao Lin, Xingqun Chen. Spatial-temporal distribution of a Noctiluca scintillans population and its adaption to environmental conditions in northern South China Sea [J]. Biodiv Sci, 2012, 20(6): 685-692.
[10] YIN Sen-Lu, KONG De-Liang, and GUO Da-Li. Seasonal variation of fine root tissue N concentration of nine common tree species in Dinghushan, Guangdong, China [J]. Chin J Plan Ecolo, 2011, 35(11): 1106-1116.
[11] WU Tong-Gui, WU Ming, LIU Li, XIAO Jiang-Hua. Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China [J]. Chin J Plan Ecolo, 2010, 34(1): 23-28.
[12] Shude Liu, Weiwei Xian. Temporal and spatial patterns of the ichthyoplankton community in the Yangtze Estuary and its adjacent waters [J]. Biodiv Sci, 2009, 17(2): 151-159.
[13] Haiping Tang, Lijuan Yan, Xinshi Zhang. Biodiversity conservation and a conception for a national desert park in Dzungaria Basin, Xinjiang [J]. Biodiv Sci, 2008, 16(6): 618-626.
[14] Jianmeng Feng. Spatial patterns of species diversity of seed plants in China and their cli-matic explanation [J]. Biodiv Sci, 2008, 16(5): 470-476.
[15] CHEN Zhi-Chao, SHI Zhao-Yong, TIAN Chang-Yan, FENG Gu. EFFECTS OF ARBUSCULAR MYCORRHIZAL FUNGAL INOCULATION ON GROWTH AND NUTRIENT UPTAKE OF TWO EPHEMERAL PLANTS [J]. Chin J Plan Ecolo, 2008, 32(3): 648-653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Weimin Li, Sifeng Li, Bin Li. Genetic Diversity in Natural Populations of Abies chensiensis Based on Nuclear Simple Sequence Repeat Markers[J]. Chin Bull Bot, 2012, 47(4): 413 -421 .
[9] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[10] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .