Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (6): 733-742.doi: 10.11983/CBB16218

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Salt Tolerant Evaluation of F1-generation Hybrids in Grape

Fu Qingqing, Sun Lulong, Zhai Heng, Du Yuanpeng*()   

  1. Key Laboratory of Crop Biology of Shandong Province/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
  • Received:2016-11-14 Accepted:2016-12-11 Online:2018-02-22 Published:2017-11-01
  • Contact: Du Yuanpeng E-mail:duyuanpeng001@163.com

Abstract:

With rootstock 1103P used as a negative control, annual cuttings of 6 hybrids of Zuoshan1 × SO4 and 2 hybrids of Zuoshan1 × 101-1 were used as materials with 100 mmol·L-1 NaCl irrigation; the chlorophyll content and photosynthetic gas exchange, chlorophyll fluorescence and growth values were measured after 20 days of NaCl treatment (with non-salt treatment as the negative control). The salt tolerance index was evaluated by each growth index; comprehensive assessment was based on principal-component, correlation, membership-function and cluster analyses: A34 and A35 plants showing no salt damage were classified as class 0; A15 and A17 plants showing at a small part of withering at plant leaf margins were classified as class I. Salt stress reduced the chlorophyll content, photosynthetic rate, new shoot growth and biomass in 1103P and B26 but A15, A17, A34 and A35 plants showed less reduction. The biomass and 12 indexes were converted to 3 independent comprehensive indexes. According to cluster analysis, A34, A35, A15 and A17 had relatively higher salt tolerance; A38, A48 and B24 had moderate salt resistance; and 1103P and B26 had more salt sensitivity. These results were consistent with the salt damage classification.

Key words: grape rootstocks, hybrid strains, salt tolerance, evaluation

Figure 1

The phenotype of grape hybrid strains under NaCl stress"

Figure 2

Effects of NaCl stress on chlorophyll content in different grape hybrid strainsDifferent lowercase letters indicate significant differences under different treatments of the same strain (P<0.05)."

Figure 3

Effects of NaCl stress on Pn, Gs, Ci and Tr of different grape hybrid strainsPn: Net photosynthetic rate; Gs: Stomatal conductance; Ci: Intercellular CO2 concentration; Tr: Transpiration rate. Different lowercase letters indicate significant differences under different treatments of the same strain (P<0.05)."

Table 1

Effects of NaCl stress on chlorophyll fluorescence parameters in leaves of grape"

Strains NaCl concentration
(mmol·L-1)
Fv/Fm ΦPSII Wk RC/CSm Ψ0 qP NPQ
1103p 0 0.811±0.007 a 0.612±0.053 a 0.387±0.009 ef 776.5±34.8 abc 0.545±0.065 a 0.856±0.026 ab 0.703±0.139 g
100 0.285±0.150 f 0.153±0.062 e 0.536±0.072 b 111.7±94.21 h 0.21±0.079 e 0.322±0.131 f 4.608±0.81 bc
A15 0 0.827±0.018 a 0.61±0.027 a 0.385±0.025 ef 793±51.51 ab 0.539±0.040 a 0.857±0.012 ab 1.256±0.04 fg
100 0.68±0.024 cde 0.35±0.071 cd 0.515±0.045 bc 621.1±73.95 cd 0.383±0.062 cd 0.662±0.051 e 3.017±0.46 de
A17 0 0.818±0.023 a 0.601±0.057 a 0.402±0.016 ef 643.2±55.1 bcd 0.507±0.08 abc 0.863±0.028 a 0.908±0.049 g
100 0.70±0.016 bcde 0.425±0.01 cd 0.475±0.037 cd 514.9±76.19 de 0.347±0.059 d 0.76±0.020 bcd 1.62±0.146 fg
A34 0 0.818±0.009 a 0.609±0.033 a 0.401±0.016 ef 668.1±33.3 bcd 0.52±0.044 ab 0.875±0.009 a 1.137±0.07 fg
100 0.768±0.023 abc 0.463±0.03 bc 0.436±0.014 de 568.7±19.40 de 0.491±0.02 abc 0.712±0.019 de 2.057±0.403 ef
A35 0 0.824±0.008 a 0.543±0.04 ab 0.397±0.022 ef 631.3±74.80 cd 0.517±0.018 ab 0.82±0.014 abc 2.235±0.251 ef
100 0.75±0.006 abcd 0.39±0.035 cd 0.415±0.03 def 528±25.68 de 0.395±0.07 bcd 0.76±0.027 bcd 2.982±1.11 de
A38 0 0.813±0.007 a 0.607±0.023 a 0.352±0.014 f 773.3±37.2 abc 0.563±0.078 a 0.887±0.018 a 0.856±0.103 g
100 0.629±0.059 e 0.324±0.065 d 0.528±0.035 bc 280.7±130.3 fg 0.302±0.042 de 0.682±0.048 de 5.53±0.287 ab
A48 0 0.816±0.012 a 0.607±0.079 a 0.39±0.022 ef 748.5±49.6 abc 0.53±0.042 a 0.873±0.011 a 1.076±0.085 g
100 0.633±0.077 de 0.368±0.03 cd 0.58±0.051 ab 418.6±51.03 ef 0.275±0.054 de 0.675±0.076 de 3.396±0.391 d
B24 0 0.806±0.003 ab 0.576±0.098 a 0.388±0.011 ef 901.3±65.99 a 0.534±0.034 a 0.861±0.015 a 1.335±0.26 fg
100 0.646±0.030 de 0.344±0.036 d 0.548±0.028 ab 653.5±44.5 bcd 0.35±0.048 d 0.715±0.051 de 3.614±0.07 cd
B26 0 0.818±0.012 a 0.57±0.039 ab 0.369±0.004 f 875.6±38.21 a 0.55±0.038 a 0.851±0.018 ab 1.27±0.114 fg
100 0.256±0.108 f 0.093±0.079 e 0.616±0.062 a 151.3±128.4 gh 0.188±0.047 e 0.307±0.307 f 6.42±1.076 a

Table 2

Salt tolerant coefficient of every single index of each grape strains under NaCl stress"

Strains X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
1103P 0.16 0.26 0.57 0.52 0.69 0.62 0.86 0.90 0.56 0.67 0.92 0.87
A15 0.18 0.38 0.75 0.67 0.85 0.77 0.93 0.95 0.71 0.82 0.90 0.94
A17 0.18 0.26 0.86 0.63 0.85 0.69 0.97 0.95 0.78 0.80 0.80 0.97
A34 0.31 0.39 0.82 0.66 0.81 0.78 1.00 0.93 0.77 0.80 0.80 0.98
A35 0.27 0.35 0.89 0.61 0.88 0.60 1.01 1.00 0.77 0.77 0.68 0.99
A38 0.29 0.36 0.62 0.54 0.69 0.70 0.94 0.89 0.59 0.69 0.87 0.92
A48 0.06 0.12 0.71 0.63 0.76 0.60 0.96 1.03 0.69 0.71 0.88 0.98
B24 0.15 0.21 0.63 0.49 0.74 0.63 0.93 0.89 0.60 0.71 0.73 0.91
B26 0.12 0.14 0.46 0.59 0.71 0.64 0.72 0.96 0.51 0.68 1.29 0.85

Table 3

Correlation matrix of every single index under NaCl stress"

Growth parameters X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X1 1.000
X2 0.881** 1.000
X3 0.437 0.523 1.000
X4 0.111 0.278 0.592 1.000
X5 0.266 0.431 0.893** 0.711* 1.000
X6 0.516 0.678* 0.271 0.522 0.284 1.000
X7 0.458 0.525 0.852** 0.309 0.576 0.275 1.000
X8 -0.358 -0.321 0.378 0.628 0.495 -0.317 0.116 1.000
X9 0.373 0.473 0.984** 0.702* 0.898** 0.347 0.821** 0.436 1.000
X10 0.376 0.588 0.833** 0.770* 0.909** 0.644 0.605 0.245 0.874** 1.000
X11 0.301 0.297 -0.501 -0.137 -0.564 0.615 -0.273 0.678* -0.456 -0.203 1.000
X12 0.324 0.363 0.926** 0.608 0.763* 0.196 0.890** 0.519 0.935** 0.720* -0.483 1.000

Table 4

Correlation of comprehensive indexes and their contribution rates under NaCl stress"

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 P
CI1 0.17 0.17 0.36 0.12 0.29 0 0.34 0.13 0.34 0.24 -0.24 0.35 0.554
CI2 0.46 0.47 0.04 -0.02 -0.03 0.44 0.14 -0.42 0.03 0.15 0.42 -0.03 0.252
CI3 -0.04 0.15 0.29 0.83 0.49 0.55 0.03 0.42 0.41 0.61 0.05 0.28 0.105

Table 5

Each strain’s comprehensive index, index weight, membership function value, value D and comprehensive evaluation under NaCl stress"

Strains CI1 CI2 CI3 U(X1) U(X2) U(X3) Value D Salt tolerance
1103P 1.39 0.67 2.63 0.20 0.46 0.00 0.252 Weaker
A15 1.68 0.82 3.19 0.71 0.79 0.97 0.761 Strong
A17 1.76 0.69 3.15 0.85 0.50 0.89 0.758 Strong
A34 1.76 0.92 3.21 0.84 1.00 1.00 0.907 Strong
A35 1.85 0.67 3.12 1.00 0.45 0.84 0.826 Strong
A38 1.48 0.88 2.76 0.36 0.92 0.23 0.499 Medium
A48 1.61 0.46 2.94 0.59 0.00 0.53 0.418 Medium
B24 1.49 0.64 2.70 0.38 0.39 0.13 0.353 Medium
B26 1.27 0.56 2.67 0.00 0.22 0.07 0.066 Weaker
Index weight 0.608 0.277 0.115

Figure 4

Cluster diagram of salt tolerance of experimental materials"

[1] 高建明, 夏卜贤, 袁庆华, 罗峰, 韩芸, 桂枝, 裴忠有, 孙守钧 (2012). 高粱种质材料幼苗期耐盐碱性评价. 应用生态学报 23,1303-1310.
[2] 贺普超 (1999). 葡萄学(第1版). 北京: 中国农业出版社. pp. 23.
[3] 何伟, 艾军, 范书田, 杨义明, 王振兴, 赵滢, 乔永在, 张亚凤, 李晓燕 (2015). 葡萄品种及砧木抗寒性评价方法研究. 果树学报 32, 1135-1142.
[4] 黄毅, 张玉龙 (2004). 保护地生产条件下的土壤退化问题及其防治对策. 土壤通报 35, 212-216.
[5] 金立桥, 车兴凯, 张子山, 高辉远 (2015). 高温、强光下黄瓜叶片PSII供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系. 植物生理学报 51, 969-976.
[6] 李丰先, 周宇飞, 王艺陶, 孙璐, 白薇, 闫彤, 许文娟, 黄瑞冬 (2013). 高粱品种萌发期耐碱性筛选与综合鉴定. 中国农业科学 46, 1762-1771.
[7] 李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报 31, 559-566.
doi: 10.3321/j.issn:1671-3877.2005.06.001
[8] 李晓芬, 尚庆茂, 张志刚, 王立浩, 张宝玺 (2008). 多元统计分析方法在辣椒品种耐盐性评价中的应用. 园艺学报 35, 351-356.
doi: 10.3321/j.issn:0513-353X.2008.03.006
[9] 廖祥儒, 贺普超, 万怡震, 朱新产 (1996). 盐胁迫对葡萄离体新梢叶片的伤害作用. 果树科学 13(4), 211-214.
[10] 刘家尧, 衣艳君, 张其德 (1998). 盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响. 植物学通报 15(2), 47-50.
doi: 10.3969/j.issn.1674-3466.1998.02.007
[11] 罗海波, 马苓, 段伟, 李绍华, 王利军 (2010). 高温胁迫对‘赤霞珠’葡萄光合作用的影响. 中国农业科学 43, 2744-2750.
[12] 莫伟平, 周琳耀, 张静逸, 黄俊波, 贝学文, 付欣雨, 王惠聪, 黄旭明 (2013). 遮阴和环剥对荔枝枝梢生长和光合生理的影响. 园艺学报 40, 117-124.
[13] 钮福祥, 华希新, 郭小丁, 邬景禹, 李洪民, 丁成伟 (1996). 甘薯品种抗旱性生理指标及其综合评价初探. 作物学报 22, 392-398.
[14] 秦红艳 (2010). 山葡萄种质资源耐盐性评价研究. 硕士论文. 北京: 中国农业科学院. pp. 33-40.
[15] 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬 (2012). 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学 45, 3265-3272.
doi: 10.3864/j.issn.0578-1752.2012.16.005
[16] 王邦锡, 何军贤, 黄久常 (1992). 水分胁迫导致小麦叶片光合作用下降的非气孔因素. 植物生理学报 18, 77-84.
[17] 王军, 周美学, 许如根, 吕超, 黄祖六 (2007). 大麦耐湿性鉴定指标和评价方法研究. 中国农业科学 40, 2145-2152.
doi: 10.3321/j.issn:0578-1752.2007.10.004
[18] 王业遴, 马凯, 姜卫兵, 凌志奋, 顾平, 吴兵, 陈炳泉, 应宝清 (1990). 五种果树耐盐力试验初报. 中国果树 (3), 8-12.
[19] 薛忠财, 高辉远, 柳洁 (2011). 野生大豆和栽培大豆光合机构对NaCl胁迫的不同响应. 生态学报 31, 3101-3109.
[20] 杨升, 张华新, 杨秀艳, 陈秋夏, 武海雯 (2015). NaCl胁迫下不同种源沙枣的生长表现差异. 林业科学 51(9), 51-58.
doi: 10.11707/j.1001-7488.20150907
[21] 杨淑萍, 危常州, 梁永超 (2013). 新疆主要棉花品种耐盐性筛选与鉴定. 干旱区研究 30, 1129-1135.
[22] 张菂, 陈昌盛, 李鹏民, 马锋旺 (2013). 利用快速荧光、延迟荧光和820 nm光反射同步测量技术探讨干旱对平邑甜茶叶片光合机构的伤害机制. 植物生理学报 49, 551-560.
[23] 赵俊香, 任翠梅, 吴凤芝, 刘守伟, 王殿奎 (2015). 16份菊芋种质苗期耐盐碱性筛选与综合鉴定. 中国生态农业学报 23, 620-627.
doi: 10.13930/j.cnki.cjea.141306
[24] 赵世杰, 史国安, 董新纯 (2002). 植物生理学实验指导. 北京: 中国农业科学技术出版社. pp. 55-57.
[25] 赵昕, 吴雨霞, 赵敏桂, 何建新 (2007). NaCl胁迫对盐芥和拟南芥光合作用的影响. 植物学通报 24, 154-160.
[26] Appenroth KJ, St?ckel J, Srivastava A, Strasser RJ (2001). Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115, 49-64.
doi: 10.1016/S0269-7491(01)00091-4 pmid: 11586773
[27] Chartzoulakis K, Klapaki G (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages.Sci Hortic 86, 247-260.
doi: 10.1016/S0304-4238(00)00151-5
[28] Foyer CH, Noctor G (2000). Oxygen processing in photosynthesis: a molecular approach.New Phytol 146, 359-388.
doi: 10.1046/j.1469-8137.2000.00667.x
[29] Galet P (1991). Precis de Pathologie Viticole (6th Edn). pp. 285.
[30] Gilmore AM (1997). Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves.Physiol Plant 99, 197-209.
doi: 10.1111/j.1399-3054.1997.tb03449.x
[31] Grotkopp E, Rejmánek M, Rost TL (2002). Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine ( Pinus) species. Am Nat 159, 396-419.
doi: 10.1086/338995 pmid: 18707424
[32] Hernández JA, Olmos E, Corpas FJ, Sevilla F, Del Río LA (1995). Salt-induced oxidative stress in chloroplasts of pea plants.Plant Sci 105, 151-167.
doi: 10.1016/0168-9452(94)04047-8
[33] Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000). Enhanced tolerance to salt stress in transgenic rice that over expresses chloroplast glutamine synthetase.Plant Mol Biol 43, 103-111.
doi: 10.1023/A:1006408712416 pmid: 10949377
[34] Lu CM, Zhang JH (1999). Effects of water stress on photosystem II photochemistry and its thermo stability in wheat plants.J Exp Bot 50, 1199-1206.
doi: 10.1093/jexbot/50.336.1199
[35] Munns R, Tester M (2008). Mechanisms of salinity tolerance.Annu Rev Plant Biol 59, 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911
[36] Samra JS (1985). Sodicity tolerance of grapes with reference to the uptake of nutrients.Indian J Hortic 42, 12-17.
[37] Strasser BJ (1997). Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients.Photosynth Res 52, 147-155.
doi: 10.1023/A:1005896029778
[38] Troncoso A, Matte C, Cantos M, Lavee S (1999). Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties. Vitis 38, 55-60.
[39] Walker RR, T?r?kfalvy E, Scott NS, Kriedemann PE (1981). An analysis of photosynthetic response to salt treatment in Vitis vinifera. Aust J Plant Physiol 8, 359-374.
doi: 10.1071/pp9810359
[40] Xu CC, Li DQ, Zou Q, Zhang JH (1999). Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages.Acta Phytophys Sin 25, 29-37.
[43] Zhu JK (2002). Salt and drought stress signal transduction in plants.Annu Rev Plant Biol 53, 247-273.
doi: 10.1146/annurev.arplant.53.091401.143329
[41] Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S (2002). Temperature acclimation of photosynthesis and related changes in photosystem II electron tran- sport in winter wheat.Plant Physiol 128, 1087-1097.
doi: 10.1104/pp.010919 pmid: 11891263
[42] Yang XH, Chen XY, Ge QY, Li B, Tong YP, Zhang AM, Li ZS, Kuang TY, Lu CM (2006). Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions.Plant Sci 171, 389-397.
doi: 10.1016/j.plantsci.2006.04.010 pmid: 22980209
[1] Zhangjian Shan,Lina Zhao,Yuchang Yang,Dan Xie,Haining Qin. An overview on assessment systems for threatened plants in China [J]. Biodiv Sci, 2019, 27(12): 1352-1363.
[2] Wang Tiantian, Hao Huaiqing, Feng Xue, Jing Haichun. Research Advances in the Function of the High-affinity K+ Transporter (HKT) Proteins and Plant Salt Tolerance [J]. Chin Bull Bot, 2018, 53(5): 710-725.
[3] Xu Zongchang, Zhou Jinhui, Zhang Chengsheng, Li Yiqiang. Review of Current Research and Utilization Status of Apocynum venetum Germplasm in China [J]. Chin Bull Bot, 2018, 53(3): 382-390.
[4] Shuhua Guo, Heng Zhai, Ning Han, Yuanpeng Du. Evaluation on Alkaline Salt Tolerance of Grape F1 Generation Hybrids [J]. Chin Bull Bot, 2018, 53(1): 51-58.
[5] Qin ZHANG, Dong-Fang ZHANG, Ming-Li WU, Jie GUO, Cheng-Zhong SUN, Cai-Xiang XIE. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models [J]. Chin J Plan Ecolo, 2017, 41(7): 770-778.
[6] Yafeng Zhou, Yanbin Xu, Yanling Wang, Qiong Li, Jianbin Hu. Establishment of a Comprehensive Evaluation System for Chilling Tolerance in Melon Seedlings Based on Principal Component Analysis and Cluster Analysis [J]. Chin Bull Bot, 2017, 52(4): 520-529.
[7] Guoqiang Wu, Qingzhao Shui, Ruijun Feng. Research Advance of K+ Channel AKT1 in Plants [J]. Chin Bull Bot, 2017, 52(2): 225-234.
[8] Jiafu Wu, Bowen Yang, Xunchao Xiang, Liang Xu, Limei Yan. Identification of Salt Tolerance in Different Rice Germplasm at Different Growth Stages [J]. Chin Bull Bot, 2017, 52(1): 77-88.
[9] Chunxin Zang,Lei Cai,Jiaqi Li,Xiaopu Wu,Xiaoguang Li,Junsheng Li. Preparation of the China Biodiversity Red List and its significance for biodiversity conservation within China [J]. Biodiv Sci, 2016, 24(5): 610-614.
[10] AN Dong-Sheng,CAO Juan,HUANG Xiao-Hua,ZHOU Juan,DOU Mei-An. Application of Lake-model based indices from chlorophyll fluorescence on sugarcane seedling drought resistance study [J]. Chin J Plan Ecolo, 2015, 39(4): 398-406.
[11] Zhilin Li,Aili Kang,Jianmin Lang,Yangang Xue,Yi Ren,Zhiwen Zhu,Jianzhang Ma,Peiqi Liu,Guangshun Jiang. On the assessment of big cats and their prey populations based on camera trap data [J]. Biodiv Sci, 2014, 22(6): 725-732.
[12] SAYRAN·Waley, LI Bing-Bai, ZHANG Jia-Hua, and YANG Shen-Bin. Application of a rice simulation model in high temperature sensitivity study [J]. Chin J Plan Ecolo, 2014, 38(5): 515-528.
[13] LU Jia-Hui, Lü Xin, LIANG Yong-Chao, and LIN Hai-Rong. Salt tolerance of Glycyrrhiza inflata seedlings in Xinjiang and its ion response to salt stress [J]. Chin J Plan Ecolo, 2013, 37(9): 839-850.
[14] Lü Jin-Hui, REN Lei, LI Yan-Feng, WANG Xuan, ZHAO Xia-Lu, and ZHANG Chun-Lai. Responses to salt stress among different genotypes of tea Chrysanthemum [J]. Chin J Plan Ecolo, 2013, 37(7): 656-664.
[15] Yanni Zhang,Zhiming Zhang,Yupeng Geng,Xiaokun Ou,Shengjing Peng,Wenli Wang,Xin Feng,Jingwen Guo. Priority plant communities for conservation in Northwest Yunnan [J]. Biodiv Sci, 2013, 21(3): 296-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[10] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .