Chin Bull Bot ›› 2013, Vol. 48 ›› Issue (6): 635-642.doi: 10.3724/SP.J.1259.2013.00635

Previous Articles     Next Articles

Chloroplast Ultrastructure and Emission Fluorescence Spectrum Characteristics for Stems of Phyllostachys pubescens

Dengju Chen1, Peijun Gao1, Xingbo Wu1, Yan Gao1, Guosheng Wen1, Yukui Wang3, Rongfu Gao1,2, Rumin Zhang1*   

  1. 1The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an 311300, China;

    2College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;

    3Research Center of Bamboo, State Forestry Administration, Hangzhou 310012, China
  • Received:2013-01-25 Revised:2013-04-03 Online:2013-12-03 Published:2013-11-01
  • Contact: Rumin Zhang

Abstract: To reveal the photosynthetic characteristics of stems of Phyllostachys pubescens, we used scanning electron microscopy to observe the chloroplast ultrastructure of stems and leaves and detected the changes in pigment content and emission fluorescence spectra in 1- and 3-year-old plants. The emission fluorescence spectra underwent fourthderivative analysis with Origin Pro 9.0. Chloroplasts of stems showed numerous lamella and abundant starch grains. The chlorophyll, carotenoid and chlorophyll a/b content was significantly lower in stems than leaves (P<0.05). The main peak of emission fluorescence spectrum at 735 nm in stems was absent. The semi-width ratios of PSII and PSI in 1- and 3-year-old stems were significantly reduced by 7.0% and 11.3% (P<0.05), respectively, as compared with leaves, whereas the height ratio increased by 6.5% and 18.3% (P<0.05), respectively. Fourth-derivative spectra showed 6 fluorescence peaks between 650 and 800 nm, representing LHCII, CP43, CP47, RCI, LHCI and PSII-PSI shoulder peaks, respectively. RCI and LHCI in stems showed obvious Stokes shifts as compared with the peaks in leaves. Thus, chloroplasts in stems of P. pubescens may adapt to far-red light and coordinate the allocation of excitation energy between PSII and PSI by increasing the chlorophyll b relative content and the number of lamella as well as reducing the content of LHCI.

高志民, 刘颖丽, 彭镇华 (2012). 毛竹PSⅡ大量捕光天线蛋白基因克隆及其表达分析. 植物科学学报 30, 64-71.
江明艳, 潘远智 (2006). 不同光质对盆栽一品红光合特性及生长的影响. 园艺学报 33, 338-343.
王文杰, 祖元刚, 王慧梅 (2007). 林木非同化器官树枝(干)光合功能研究进展. 生态学报 27, 1583-1595.
王星星, 刘琳, 张洁, 温国胜, 高荣孚, 高岩, 张汝民 (2012). 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化. 植物生态学报 36, 456–462.
应叶青, 郭璟, 魏建芬, 邹奕巧, 胡冬春, 方伟 (2009). 水分胁迫下毛竹幼苗光合及叶绿素荧光特性的响应. 北京林业大学学报 31, 128-133.
Andreeva A, Abarova S, Stoitchkova K, Picorel R, Velitchkova M (2007). Selective Photobleaching of Chlorophylls and Carotenoids in Photosystem I Particles under High-Light Treatment. Photochem Photobiol 83, 1301-1307.
Andreeva A, Stoitchkova K, Busheva M, Apostolova E (2003). Changes in the energy distribution between chlorophyll-protein complexes of thylakoid membranes from pea mutants with modified pigment content: I. Changes due to the modified pigment content. J Photoch Photobio B 70, 153-162.
Bassi R, Simpson D (1987). Chlorophyll-protein complexes of barley photosystem I FEBS 163, 221-230.
Bellafiore S, Barneche F, Peltier G, Rochaix JD (2005). State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892-895.
Ben-Shem A, rolow F, Nelson N (2003). Crystal structure of plant photosystem I. Nature 426, 630-635.
Bertamini M, Muthuchelian K, Nedunchezhian N (2006). Shade effect alters leaf pigments and photosynthetic responses in Norway spruce (Picea abies L.) grown under field conditions. Photosynthetica 44, 227-234.
Berveiller D, Damesin C (2008). Carbon assimilation by tree stems: potential involvement of phosphoenolpyruvate carboxylase. Trees-Struct Funct 22, 149-157.
Birkhold KT, Koch KE, Darnell RL (1992). Carbon and nitrogen economy of developing rabbiteye blueberry fruit. Jam Soc Hortic Sci 117, 139-145.
Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K (2013). Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytol 197, 555-565.
Cannell M (1975). Crop physiological aspects of coffee bean yield: a review. Journal of Coffee Research 5, 7-20.
Cannon WA (1905). On the transpiration of Fouquieria splendens. In Club TB, eds. Bulletin of the Torrey Botanical Club. The Club. pp. 397-414.
Cernusak LA, Hutley LB (2011). Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of Eucalyptus miniata. Plant Physiol 155, 515-523.
Cometta A, Zucchelli G, Karapetyan NV, Engelmann E, Garlaschi FM, Jennings RC (2000). Thermal Behavior of Long Wavelength Absorption Transitions in Spirulina platensis Photosystem I Trimers. Biophys J 79, 3235-3243.
Croce R, Zucchelli G, Garlaschi FM, Jennings RC (1998). A thermal broadening study of the antenna chlorophylls in PSI-200, LHCI, and PSI core. Biochem 7 (50): 17355-17360.
Danielsson R, Suorsa M, Paakkarinen V, Albertsson P?, Styring S, Aro E M, Mamedov F (2006). Dimeric and monomeric organization of photosystem II. J Biol Chem 281, 14241-14249.
Eskins K, Westhoff P, Beremand PD (1989). Light Quality and Irradiance Level Interaction in the Control of Expression of Light-Harvesting Complex of Photosystem II Pigments, Pigment-Proteins, and mRNA Accumulation. Plant Physiol 91, 163-169.
Eyles A, Pinkard EA, O'Grady AP, Worledge D, Warren CR (2009). Role of corticular photosynthesis following defoliation in Eucalyptus globulus. Plant Cell Environ 32, 1004-1014.
Govindjee R (1995). Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol 22, 131-160.
Hibberd JM, Quick WP (2002). Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants. Nature 415, 451-454.
Hoober JK, Eggink LL, Chen M (2007). Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynth Res 94, 387-400.
Ivanov AG, Krol M, Sveshnikov D, Malmberg G, Gardestr?m P, Hurry V, ?quist G, Huner NPA (2006). Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Planta 223, 1165-1177.
Jennings RC, Zucchelli G, Croce R, Garlaschi FM (2003). The photochemical trapping rate from red spectral states in PSI–LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. BBA 1557, 91-98.
Jensen PE, Gilpin M, Knoetzel J, Scheller HV (2000). The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction center core. J Biol Chem 275, 24701-24708.
Kochubey SM, Samokhval EG (2000). Long-wavelength chlorophyll forms in Photosystem I from pea thylakoids. Photosynth Res 63, 281-290.
Kocurek M, Pilarski J (2011). Activity of C4 enzymes in C3-type herbaceous plants. Photosynthetica 49, 473-477.
Kozlowski TT (1992). Carbohydrate sources and sinks in woody plants. Bot Rev 58, 107-222.
Kriedemann PE, Buttrose MS (1971). Chlorophyll and photosynthetic activity within woody shoots of Vitis vinifera (L.). Photosynthetica, Tchecosl 5, 22-7.
Leong TY, Goodchild DJ, Anderson JM (1985). Effect of light quality on the composition, function, and structure of photosynthetic thylakoid membranes of Asplenium australasicum (Sm.) Hook. Plant Physiol 78, 561-567.
Lichtenthaler HK. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148, 350-382.
Morosinotto T, Breton J, Bassi R, Croce R (2003). The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem 278, 223-229.
Mugnai S, Mancuso S (2010). Oxygen Transport in the Sapwood of Trees in: Mugnai S, ncuso S, ed. Waterlogging Signalling and Tolerance in Plants, Berlin: springer Link pp 61-75.
Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002). Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89, 47-162.
Rascio N, Mariani P, Tommasini E, Bodner M,Larcher W (1991). Photosynthetic strategies in leaves and stems of Egeria densa. Planta 185, 297-303.
Rivadossi A, Zucchelli G, Garlaschi FM, Jennings RC (1999). The importance of PS I chlorophyll red forms in light-harvesting by leaves. Photosynth res 60, 209-215.
S?b? A, Krekling T, Appelgren M (1995). Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. PCTOC 41, 177-185.
Saveyn A, Steppe K, Ubierna N, Dawson TE (2010). Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant cell environ 33, 1949-1958.
Spicer R, Holbrook NM (2004). Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia? Plant cell environ 28, 192-201.
Srivastava A, Strasser RJ (1999). Greening of peas: parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37, 365-392.
Stewart WN, Rothwell GW (1993). Paleobotany and the evolution of plants, 2nd edn. Cambridge: Cambridge University Press. pp. 2-10.
Sun Q, Yoda K, Suzuki H (2005). Internal axial light conduction in the stems and roots of herbaceous plants. Phyton-int J Exp Bot 56, 191-203.
Sun Q, Yoda K, Suzuki M, Suzuki H (2003). Vascular tissue in the stem and roots of woody plants can conduct light. Phyton-int J Exp Bot 54, 1627-1635.
Wen GS, Zhang LY, Zhang RM, Cao ZH, Zhou GM, Huang H, Wong MH (2011). Temporal and Spatial Dynamics of Carbon Fixation by Moso Bamboo (Phyllostachys pubescens) in Subtropical China. Bot Rev 77, 271-277.
No related articles found!
Full text



[1] Fusuo Zhang Zhenling Cui Jiqing Wang Chunjian Li Xinping Chen . Current status of soil and plant nutrient management in China and improvement strategies.[J]. Chin Bull Bot, 2007, 24(06): 687 -694 .
[2] Xu Xinrong and Shao Huaying. The Scanning Electron Microscopic Observation of Pollen Grains of two Species of Pharbitis[J]. Chin Bull Bot, 1983, 1(02): 54 .
[3] Guoqi Song, Xingjun Wang, Aiqin Li, Changsheng Li. Research Progress in Suspensor of Angiosperms[J]. Chin Bull Bot, 2012, 47(2): 188 -195 .
[4] Manlan Zhu, Liangsheng Wang, Huijin Zhang, Yanjun Xu, Xuchen Zheng, Lijin Wang. Relationship Between the Composition of Anthocyanins and Flower Color Variation in Hardy Water Lily (Nymphaea spp.) Cultivars[J]. Chin Bull Bot, 2012, 47(5): 437 -453 .
[5] Mao Xue-wen. A Problem Worth to Discuss - Asexual Reproduction and Vegetative Propagation of Plant[J]. Chin Bull Bot, 1992, 9(04): 56 -58 .
[6] WU Hui, DAI Hai-Fang, ZHANG Ju-Song, JIAO Xiao-Ling, LIU Cui, SHI Jun-Yi, FAN Zhi-Chao, and ALIYAN?Rouzi. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves[J]. Chin J Plan Ecolo, 2014, 38(10): 1124 -1134 .
[8] WU Yun-Na, LI Zheng-Hai. Changing of Landscape Diversity with Time in Xilinguole Steppe[J]. Chin J Plan Ecolo, 2000, 24(1): 58 -63 .
[9] Wang Renzhong. Density-Dependence of Calamagrostis epigejos in Songnen Grassland[J]. Chin J Plan Ecolo, 1998, 22(1): 85 -89 .
[10] ZHANG Liang, XING Fu, YU Li-Li, XU Kun, SUN Zhong-Lin, Lü Xian-Guo. PLANT SPECIES DIVERSITY OF THE ISLAND FOREST IN A MARSH IN THE SANJIANG PLAIN, CHINA[J]. Chin J Plan Ecolo, 2008, 32(3): 582 -590 .