Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (5): 601-608.doi: 10.11983/CBB16003

Previous Articles     Next Articles

Construction of a Genetic Map and QTL Mapping of Fruit-related Traits in Eggplant (Solanum melongena)

Lifeng Xie1,2, Ye Li1, Jingfu Li2*, Ning Li3*   

  1. 1Harbin Academy of Agricultural Sciences, Harbin 150028, China
    2College of Horticulture, Northeast Agricultural University, Harbin 150030, China
    3Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
  • Received:2016-01-06 Accepted:2016-04-26 Online:2016-09-27 Published:2016-09-01
  • Contact: Li Jingfu,Li Ning E-mail:lijf_2005@126.com;n.li@msn.com
  • About author:

    # Co-first authors

Abstract:

A linkage map of eggplant (Solanum melongena) was constructed for an intraspecific RIL population derived from a cross between 09-101-M and 10TL-102-F4-1. The map contains 157 markers, encompasses 16 linkage groups, spanning 991.7 cM and spaced at an average interval of 6.32 cM. Composite interval mapping analysis with genotypic data from 157 molecular markers revealed the positions of 18 quantitative trait loci (QTL) for fruit-related traits. Ten of the QTLs identified were major QTLs, and 8 QTLs in corresponding positions were detected in both experimental locations and years. In all QTLs, the effect value of QTL fw1.1, located on LG01 (E09) E25M34-E33M57b and controlling fruit weight was the largest, reaching 23.8% to 31.6%. Fruit length and fruit diameter were significantly correlated with fruit weight, and the QTLs controlling fruit length, fruit diameter and fruit weight were in similar map positions.

Table 1

Investigation standard of fruit-related traits of eggplant"

Traits Investigation standard
Fruit length (fl) Length of 10 fruits per genotype were measured (in cm), and the mean fl for each genotype was used for analysis
Fruit diameter (fd) Width of 10 fruits per genotype were measured (in cm), and the mean fd for each genotype was used for analysis
Fruit shape index (fsi) Fruit shape index was calculated as the ratio between length and diameter (fl/fd)
Fruit weight (fw) Weight of 10 fruits per genotype were measured (in g), and the mean fw for each genotype was used for analysis
Fruit anthocyanin intensity (fai) Fruit anthocyanin intensity was scored the degree of pigmentation in the purple fruits only on a scale of 1 to 7 (1=green-white; 3=light purple; 5=purple; 7=dark purple)
Fruit calyx anthocyanin intensity (fcai) Fruit calyx anthocyanin intensity was evaluated on a 1 to 7 scale like fai

Table 2

ANOVA (Analysis of variance) for 09-101 and 10TL- 102 parents and related progeny of eggplant"

Traits 09-101 10TL-102 F1
fl 39.2±0.92 a 6.4±0.74 b 22.1±4.12 a
fd 3.0±0.08 a 5.2±0.11 b 4.2±0.42 a
fsi 13.5±0.87 a 1.18±0.78 b 6.6±0.78 a
fw 140±2.12 a 45±0.98 b 96.1±14.1 b
fai 7±0.01 a 1±0.01 b 4.1±1.02 a
fcai 7±0.01 a 1±0.01 b 3.82±1.13 a

Table 3

Phenotypic correlations for the fruit-related traits of the RIL population of eggplant"

Traits fl fd fsi fw fai
fd 0.498**
fsi 0.803** 0.632**
fw 0.892** 0.843** 0.376*
fai 0.010 -0.128 -0.014 0.011
fcai 0.007 0.009 0.035 0.102 0.113

Figure 1

Genetic map and localization of QTLs of fruit-related traits in 09-101×10TL-102 of eggplant The font marks are public markers on the EW2009 map."

Table 4

QTL detected for the fruit-related traits based on CIM (composite interval mapping) analysis"

Traits QTLs Years/Location Marker interval QTL position Peak LOD Addition effect R2
fl fl1.1
fl1.1
fl1.1
fl2.1
fl2.1
fl2.1
fl6.1
fl9.1
fl9.1
fl9.1
2013-HRB
2014-HRB
2014-WUH
2013-HRB
2014-HRB
2014-WUH
2014-HRB
2013-HRB
2014-HRB
2014-WUH
E25M34-E33M57b
E25M34-E33M57b
E25M34-E33M57b
E40M47f-E37M60
E37M47c-E37M60
E37M47c-E37M60
E35M47a-E35M36
emh03G07-E38M59a
E16M20-E38M59a
E16M20-E38M59a
62.3
62.3
62.3
39.2
39.2
39.2
23.6
12.9
12.9
12.9
5.02
5.13
5.84
4.02
4.68
4.21
4.13
7.89
7.40
7.52
0.83
0.78
0.93
0.82
0.89
0.76
0.32
0.33
0.31
0.40
13.2
13.4
14.2
13.6
13.8
13.4
5.2
20.3
18.9
13.1
fd fd8.1
fd9.1
fd9.1
fd9.1
fd13.1
2014-WUH
2013-HRB
2014-HRB
2014-WUH
2014-WUH
emd01C04-E40M26
E16M20-E38M59a
E16M20-E38M59a E16M20-E38M59a
E35M48-E33M33
84.6
15.8
15.8
15.8
45.2
3.98
8.31
9.02
6.23
5.03
0.21
0.23
0.38
0.34
0.12
9.8
21.3
20.2
27.9
4.3
fsi fsi3.1
fsi3.1
fsi3.1
fsi12.1
2013-HRB
2014-HRB
2014-WUH
2013-HRB
emf01M12-E13M18
emf01M12-E13M18
emf01M12-E13M18
E26M35-E35M32
39.0
39.0
39.0
23.6
4.02
3.95
3.88
3.20
0.32
0.54
0.38
-0.47
9.8
13.2
12.1
8.9
fw fw1.1
fw1.1
fw1.1
fw9.1
fw9.1
2013-HRB
2014-HRB
2014-WUH
2014-HRB
2014-WUH
E25M34-E33M57b
E25M34-E33M57b
E25M34-E33M57b E16M17-E38M59a
E16M17-E44M47a
63.5
63.5
63.5
14.2
14.2
12.35
11.63
15.17
9.81
9.23
0.24
0.27
0.26
0.31
0.52
25.4
23.8
31.6
13.7
14.8
fai fai2.1
fai10.1
fai11.1
fai11.1
fai11.1
fai16.1
2013-HRB
2014-WUH
2013-HRB
2014-HRB
2014-WUH
2014-WUH
E30M47a-E35M17b
E35M47d-E12M23
E35M54a-E35M59
E35M54a-E35M59
E35M54a-E35M59
E17M55-E21M23
78.1
96.3
32.5
32.5
32.5
14.2
3.15
3.32
13.08
12.20
10.52
3.18
-0.15
-0.17
0.82
0.74
1.18
-0.31
5.3
6.9
20.9
18.7
10.1
4.2
fcai fcai8.1
fcai8.1
fcai8.1
fcai8.2
fcai8.2
fcai8.2
fcai10.1
2013-HRB
2014-HRB
2014-WUH
2013-HRB
2014-HRB
2014-WUH
2014-WUH
E38M43-emd03D09
E38M43-emd03D09
E38M43-emd03D09
E33M46-E23M60a
E33M46-E23M60a
E33M46-E23M60a
E43M54-E36M59
22.1
22.1
22.1
14.7
14.7
14.7
42.1
12.62
10.33
10.95
5.22
5.18
5.26
3.21
0.33
0.08
0.46
0.19
0.16
0.14
0.22
25.7
20.4
21.3
11.1
11.1
11.3
4.4
1 曹必好, 雷建军, 孙秀东, 陈国菊, 孟成民 (2006). 茄子 RAPD分子标记图谱的构建. 园艺学报 33, 1092-1092.
2 黄锐明, 陈国良, 谢晓凯, 卢永奋, 卢海强 (2006a). 茄子果径遗传效应初探. 长江蔬菜 9, 45-46.
3 黄锐明, 谢晓凯, 卢永奋, 卢海强, 柳江海 (2006b). 茄子果长遗传效应的初步研究. 广东农业科学 7, 25-26.
4 黄晓梅, 王傲雪, 许向阳, 李景富, 李宁 (2010). 番茄遗传图谱构建和抗晚疫病基因Ph-2的QTL分析. 园艺学报 37, 1085-1092.
5 李怀志 (2011). 茄子遗传连锁图谱构建及果实相关性状QTL 定位. 博士论文. 上海: 上海交通大学. pp. 65-66.
6 李宁, 李烨, 姚明华, 谢立峰, 张环宇 (2015). 茄子遗传图谱构建及重要性状分子定位的研究进展. 分子植物育种 9, 2127-2134.
7 李锡香, 朱德蔚 (2006). 茄子种质资源描述规范和数据标准. 北京: 中国农业出版社. pp. 11-21.
8 刘进生, Phatak SC (1992). 茄子功能性雄性不育的遗传及其与果紫色基因连锁关系的研究. 遗传学报 19, 349-354.
9 乔军, 陈钰辉, 王利英, 刘富中, 张映, 连勇 (2012). 茄子果形的QTL定位. 园艺学报 39, 1115-1122.
10 乔军, 刘富中, 陈钰辉, 连勇 (2011a). 茄子果萼色遗传研究. 植物遗传资源学报 12, 806-810.
11 乔军, 刘富中, 陈钰辉, 连勇 (2011b). 茄子果形遗传研究. 园艺学报 38, 2121-2130.
12 许向阳, 孟凡娟, 李景富 (2007). 番茄资源对叶霉病的抗性鉴定和SSR标记遗传变异分析. 植物病理学报 37, 520-527.
13 Food and Agriculture Organization of the United Nations (FAO) (2013). FAO STAT. .
14 Foolad MR (1999). Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping.Genome 42, 727-734.
15 Frary A, Doganlar S, Daunay MC, Tanksley SD (2003). QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species.Theor Appl Genet 107, 359-370.
16 Frary A, Frary A, Daunay MC, Huvenaars K, Mank R, Doğanlar S (2014). QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis.Euphytica 197, 211-228.
17 Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A (2012). Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets.Theor Appl Genet 125, 47-56.
18 Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014). Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world.DNA Res 21, 649-660.
19 Janick J, Topoleski LD (1963). Inheritance of fruit color in eggplant (Solanum melongena).Proc Am Soc Hort Sci 83, 547-558.
20 Kosambi DD (1943). The estimation of map distances from recombination values. Annu Eugenics 12, 172-175.
21 Nunome T, Ishiguro K, Yoshida T, Hirai M (2001). Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers.Breeding Sci 51, 19-26.
22 Nunome TNS, Izumi K, Kanamori H, Koji M, Hirotaka Y, Akio O, Hiroyuki F (2009). Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.).Theor Appl Genet 119, 1143-1153.
23 Van Ooijen JW (2006). JoinMap® 4.0: Software for the Calculation of Genetic Linkage Maps in Experimental Population. Wageningen, Kyazma B. V.
24 Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs.J Hered 93, 77-78.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[5] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[6] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[7] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[8] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[9] Li Yunxiang, Liu Yucheng, Zhong Zhangcheng. Quantitative Structure and Dynamics of Leaf Populations of Gordonia acuminata on Jinyun Mountain[J]. Chin J Plan Ecolo, 1997, 21(1): 67 -76 .
[10] TANG Meng-Ping, ZHOU Guo-Mo, SHI Yong-Jun, CHEN Yong-Gang, WU Ya-Qi, ZHAO Min-Shui. STUDY OF DOMINANT PLANT POPULATIONS AND THEIR SPATIAL PATTERNS IN EVERGREEN BROADLEAVED FOREST IN TIANMU MOUNTAIN, CHINA[J]. Chin J Plan Ecolo, 2006, 30(5): 743 -752 .