Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (3): 307-321.doi: 10.11983/CBB16109

Previous Articles     Next Articles

Effect of Seasonal Grazing on Trade-off Among Plant Functional Traits in Root, Stem and Leaf of Leymus chinensis in the Temperate Grassland of Inner Mongolia, China

Yan Pan1, Jirui Gong1*, Taogetao Baoyin2, Qinpu Luo1, Zhanwei Zhai1, Sha Xu1, Yihui Wang1, Min Liu1, Lili Yang1   

  1. 1State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science & Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    2College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
  • Received:2016-05-12 Accepted:2016-10-16 Online:2017-05-27 Published:2017-05-01
  • Contact: Gong Jirui E-mail:jrgong@bnu.edu.cn
  • About author:

    # Co-first authors

Abstract:

Grazing represents the main way for utilization of grassland, and different seasonal grazing affects compensatory growth and regrowth by affecting the trade-off among plant functional traits. To understand the trade-off and variation among the ‘soft’ and ‘hard’ traits under different seasonal grazing, we measured soft traits such as plant height, internode length, and tillers and hard traits such as photosynthetic capacity, antioxidant system and substance contents of osmotic adjustment in root, stem and leaf of Leymus chinensis. Compared with spring grazing, under continuous grazing, L. chinensis adopts stronger avoidance and tolerance strategies. The soft traits and some hard traits, such as photosynthetic capacity, chlorophyII fluorescence characteristics and energy partition show the same trend: net photosynthetic rate decreasing in June and increasing in August. However, the plants have higher photosynthetic product in leaf under spring grazing, which is harmful for regrowth, with vast organic matter contents eaten after grazing. However, under continuous grazing, L. chinensis allocates more to stem and root, which is conducive to uptake water from soil and regrow by using the remaining organic matter. Thus, under three-year grazing, continuous grazing is better for regrowth of L. chinensis and sustainable for grassland.

Figure 1

Monthly total precipitation and mean air temperature in the study sites during 2014"

Table 1

Soil properties under 3 study sites"

Treatments OM
(g∙kg-1)
TN
(g∙kg-1)
TP
(g∙kg-1)
AP
(mg∙kg-1)
T0 19.75 1.50 0.29 2.40
T1 18.85 1.38 0.28 2.56
T2 14.05 1.24 0.30 2.31

Table 2

Community characteristics under 3 study sites (means±SE, n=9)"

Community characteristics T0 T1 T2
Aboveground biomass (g∙m-2) 135.83±6.79 a 31.56±2.47 b 55.62±5.20 c
Standing litter (g∙m-2) 63.89±10.27 a 3.78±1.60 b 1.23±0.32 b
Litter (g∙m-2) 61.96±4.09 a 12.44±1.60 b 10.10±2.41 b
Richness 5.89±0.72 a 9.00±0.75 b 7.78±0.43 b

Figure 2

Soft traits of Leymus chinensis under different seasonal grazing treatments (means±SE) T0: Enclosed plot; T1: Continuous grazing plot; T2: Spring grazing plot. Different letters indicate significant differences among treatments (LSD test, P<0.05), with June in capital letters and August in lowercase letters."

Figure 3

Photosynthetic characteristics and water potential of Leymus chinensis under different seasonal grazing treatments (means±SE) T0: Enclosed plot; T1: Continuous grazing plot; T2: Spring grazing plot; Pn: Net photosynthetic rate; Ci: Intercellular CO2 concentration; gs: Stomatal conductance; Tr: Transpiration rate; WUE: Water use efficiency; ψ: Water potential. Different letters represent significant differences among treatments (LSD test, P<0.05), with June in capital letters and August in lowercase letters."

Figure 4

ChlorophyII fluorescence characteristics of Leymus chinensis under different seasonal grazing treatments (means± SE)T0: Enclosed plot; T1: Continuous grazing plot; T2: Spring grazing plot; Fv/Fm: Maximal quantum yield of PSII photochemistry; Fvʹ/Fmʹ: The energy harvesting efficiency of PSII; ΦPSII: Effective quantum yield of PSII photochemistry; ETR: Electron transport rate; qp: Photochemical quenching coefficient; NPQ: Non-photochemical quenching coefficient. Different letters represent significant differences among treatments (LSD test, P<0.05), with June in capital letters and August in lowercase letters."

Figure 5

Energy partition of Leymus chinensis under different seasonal grazing treatmentsP: Photosynthetic electron transport; D: Thermal energy dissipation; E: Excess"

Figure 6

The content of malondialdehyde and activities of superoxide dismutase and catalase of Leymus chinensis un- der different seasonal grazing treatments (means±SE)T0: Enclosed plot; T1: Continuous grazing plot; T2: Spring grazing plot; MDA: Malondialdehyde; SOD: Superoxide dismutase; CAT: Catalase. Different letters represent significant differences among treatments (LSD test, P<0.05), with June in capital letters and August in lowercase letters."

Table 3

Substances contents of osmotic adjustment of Leymus chinensis under different seasonal grazing treatments (means± SE)"

June August
T0 T1 T2 T0 T1 T2
Soluble sugar
(mg∙g-1)
Leaf 25.60±1.19 Aa 6.61±0.05 Ba 20.24±2.29 Ca 25.87±0.55 Aa 21.38±2.11 ABa 19.22±3.41 Ba
Stem 18.72±4.52 Ab 23.56±0.60 Bb 17.75±0.96 Aa 49.27±0.76 Ab 30.82±0.69 Bb 26.93±2.04 Bb
Root 11.42±0.68 Ac 7.37±0.64 Aa 6.87±0.87 Ab 23.45±0.55 Aa 11.12±0.33 Bc 5.86±0.33 Cc
Soluble
protein
(mg∙g-1)
Leaf 0.97±0.07 Aa 1.44±0.12 Bb 2.25±0.11 Ca 1.37±0.06 Aa 0.34±0.06 Ba 0.49±0.01 Ba
Stem 0.64±0.01 Aa 1.09±0.08 Bb 0.78±0.01 Ab 0.67±0.00 ABb 0.89±0.09 Ab 0.35±0.08 Ba
Root 1.17±0.18 Aa 1.96±0.05 Bb 0.59±0.02 Cb 7.11±0.12 Ac 6.53±0.12 Bc 6.20±0.41 Bb
Proline
(μg∙g-1)
Leaf 18.64±0.54 Aa 16.71±0.48 Aa 24.18±0.70 Ba 26.73±0.77 Aa 7.30±0.21 Ba 15.73±0.89 Ca
Stem 9.79±0.28 Ab 13.55±0.39 Bb 8.44±0.24 Cb 24.72±1.84 Aa 55.38±1.60 Bb 35.91±1.43 Cb
Root 5.91±0.17 Ac 11.33±0.33 Bc 3.79±0.11 Cc 72.38±2.09 Ab 24.27±0.70 Bc 16.69±0.48 Ca

Figure 7

Principal component analysis (PCA) between traits of Leymus chinensis under different seasonal grazing treatments T0: Enclosed plot; T1: Continuous grazing plot; T2: Spring grazing plot; PH: Plant height; IL: Internodal length; TN: Tiller number; SLA: Specific leaf area; Pn: Net photosynthesis rate; P: Photosynthetic electron transport; D: Thermal energy dissipation; WUE: Water use efficiency; LSSC: Leaf soluble sugar content; SSSC: Stem soluble sugar content; RSSC: Root soluble sugar content; LSPC: Leaf soluble protein content; SSPC: Stem soluble protein content; RSPC: Root soluble protein content; LPC: Leaf proline content; SPC: Stem proline content; RPC: Root proline content; MDA: Malondialdehyde content; SOD: Superoxide dismutase activity; CAT: Catalase activity"

[1] 敖敦高娃, 宝音陶格涛 (2015). 不同时期放牧对典型草原群落地上生产力的影响. 中国草地学报 37, 28-34.
[2] 白永飞, 徐志信 (1994). 典型草原9种牧草生长发育规律的研究. 中国草地学报 6, 21-27.
[3] 白永飞, 许志信, 段淳清, 李德新 (1996). 典型草原主要牧草植株贮藏碳水化合物分布部位的研究. 中国草地学报 1, 7-9.
[4] 陈思羽, 刘鹏, 朱末, 夏冬冬, 李亮, 徐克章, 陈展宇, 张治安 (2016). 大豆植株不同冠层种子活力及其萌发中抗氧化酶活性. 植物学报 51, 24-30.
[5] 陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报 38, 1135-1153.
[6] 侯向阳, 徐海红 (2010). 不同放牧制度下短花针茅荒漠草原碳平衡研究. 中国农业科学 44, 50-57.
[7] 贾永霞, 孙锦, 王丽萍, 束胜, 郭世荣 (2011). 低氧胁迫下黄瓜植株热耗散途径. 应用生态学报 22, 707-712.
[8] 李辉, 张光灿, 谢会成, 许景伟, 李传荣, 孙居文 (2016). 苯酚废水对垂柳叶片光合生理参数的影响. 植物学报 51, 31-39.
[9] 李建龙, 许鹏 (1991). 草地适应性利用制度设计的探讨. 草业科学 8, 67-69.
[10] 李勤奋, 韩国栋, 敖特根, 卫志军 (2004). 划区轮牧中不同放牧利用时间对草地植被的影响. 生态学杂志 50, 7-10.
[11] 李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报 38, 440-451.
[12] 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报 2, 159-170.
[13] 厉广辉, 万勇善, 刘风珍, 张昆 (2014). 苗期干旱及复水条件下不同花生品种的光合特性. 植物生态学报 38, 729-739.
[14] 刘浩荣, 宋海星, 刘代平, 官春云, 刘强, 陈社员 (2007). 油菜茎叶可溶性糖与游离氨基酸含量的动态变化. 西北农业学报 16, 123-126.
[15] 单立山, 李毅, 石万里, 杨彩红 (2015). 土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响. 水土保持通报 35, 106-109.
[16] 王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报 24, 268-274.
[17] 王学奎 (2006). 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社. pp. 202-204.
[18] 许大全 (2013). 光合作用学. 北京: 科学出版社. pp. 93-95.
[19] 晏欣, 龚吉蕊, 张梓瑜, 黄永梅, 安然, 祁瑜, 刘敏 (2013). 狼针草光合特性对放牧干扰的响应. 植物生态学报 37, 530-541.
[20] 尹本丰, 张元明 (2015). 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响. 植物生态学报 39, 517-529.
[21] 尹丽, 刘永安, 谢财永, 江雪, 王永杰, 李银华, 颜震, 胡庭兴 (2012). 干旱胁迫与施氮对麻疯树幼苗渗透调节物质积累的影响. 应用生态学报 23, 632-638.
[22] 张大勇 (2004). 植物生活史进化与繁殖生态学. 北京: 科学出版社.
[23] 张仁和, 郑友军, 马国胜, 张兴华, 路海东, 史俊通, 薛吉全 (2011). 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报 31, 1303-1311.
[24] 赵康, 宝音陶格涛 (2014). 季节性放牧利用对典型草原群落生产力的影响. 中国草地学报 36, 109-115.
[25] Adler PB, Milchunas DG, Sala OE, Burke IC, Lauenroth WK (2005). Plant traits and ecosystem grazing effects: comparison of US sagebrush steppe and Patagonian step- pe.Ecol Appl 15, 774-792.
[26] An H, Li GQ (2014). Differential effects of grazing on plant functional traits in the desert grassland.Pol J Ecol 62, 239-251.
[27] Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature 431, 181-184.
[28] Bajji M, Lutts S, Kinet JM (2001). Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum) cultivars performing differently in arid conditions. Plant Sci 160, 669-681.
[29] Barger NN, Ojima DS, Belnap J, Wang SP, Wang YF, Chen Z (2004). Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian grassland.Rangeland Ecol Manag 57, 613-619.
[30] Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water stress studies.Plant Soil 39, 205-207.
[31] Bencze S, Bamberger Z, Janda T, Balla K, Bedő Z, Veisz O (2011). Drought tolerance in cereals in terms of water retention, photosynthesis and antioxidant enzyme activities.Cent Eur J Biol 6, 376-387.
[32] Bowler C, Montagu MV, Inze D (1992). Superoxide dismutase and stress tolerance.Annu Rev Plant Biol 43, 83-116.
[33] Bradford MM, Williams WL (1977). Protein-assay reagent and method. USA 05/694668. 1977-05-17.
[34] Briske DD (1996). Strategies of plant survival in grazed systems: a functional interpretation. In: The Ecology and Management of Grazing Systems. Wallingford: CAB International. pp. 37-67.
[35] Bryant JP, Klein DR (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357-368.
[36] Catoni R, Granata MU, Sartori F, Varone L, Gratani L (2015). Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf trait plasticity.Photosynthetica 53, 35-46.
[37] Chen SP, Bai YF, Lin GH, Liang Y, Han XG (2005). Effects of grazing on photosynthetic characteristics of major step- pe species in the Xilin River Basin, Inner Mongolia, China.Photosynthetica 43, 559-565.
[38] Christine HF, Granham N (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146, 359-388.
[39] Clairborne A (1985). Catalase activity. In: Greenwald RA, ed. Handbook of Methods for Oxygen Radical Research. Boca Raton: CRC Press. pp. 283-284.
[40] Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Pausas JG (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Aust J Bot 51, 335-380.
[41] Cosgrove J, Borowitzka MA (2010). Chlorophyll fluorescence terminology: an introduction. Berlin: Springer Neth- erlands. pp.11-12.
[42] Demmig-Adams B, AdamsIII WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plantarum 98, 253-264.
[43] Dhindsa RS, Matowe W (1981). Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation.J Exp Bot 32, 79-91.
[44] Díaz S, Noy-Meir I, Cabido M (2001). Can grazing response of herbaceous plants be predicted from simple vegetative traits.J Appl Ecol 38, 497-508.
[45] Donaghy DJ, Turner LR, Lane PA, Rawnsley RP (2007). Patterns of leaf and root regrowth, and allocation of water-soluble carbohydrate reserves following defoliation of plants of prairie grass (Bromus willdenowii Kunth.). Grass Forage Sci 62, 497-506.
[46] Donald DD, John CB (1984). Impacts of grazing intensity and specialed grazing systems on the use and value of rangeland-summary and recommendations. In: Developing Strategies for Rangeland Management. Colorodo: Westview Press. pp. 880-882.
[47] Earl HJ, Tollenaar M (1999). Using chlorophyII fluorometry to compare photosynthetic performance of commercial maize (Zea mays L.) hybrids in the fields in the field. Field Crop Res 61, 201-210.
[48] Fahnestock JT, Detling JK (2000). Morphological and phy- siological responses of perennial grasses to long-term grazing in the Pryor Mountains, Montana. Am Midl Nat 143, 312-320.
[49] Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis.Annu Rev Plant Physiol 33, 317-345.
[50] Foyer CH, Descourvires P, Kunert KJ (1994). Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17, 507-523.
[51] Funk JL, Cornwell WK (2013). Leaf traits within communities: context may affect the mapping of traits to function.Ecology 94, 1893-1897.
[52] Giannopolitis CN, Ries SK (1977). Superoxide dismutase 1. Occurrence in higher plants.Plant Physiol 59, 309-314.
[53] Guo X, Wang RQ, Chang RY (2014). Effects of nitrogen addition on growth and photosynthetic characteristics of Acer truncatum seedlings. Dendrobiology 72, 151-161.
[54] He Y, Zhu ZJ, Yang J, Ni XL, Zhu B (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity.Environ Exp Bot 66, 270-278.
[55] Klimešová J, Latzel V, de Bello F, van Groenendael JM (2008). Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits.Preslia 80, 245-253.
[56] Larcher W (2003). Carbon utilization and dry matter production. In: Physiological Plant Ecology, 4th edn. Heidelberg: Springer. pp. 71-72.
[57] Lavorel S (2013). Plant functional effects on ecosystem services.J Ecol 101, 4-8.
[58] Li FM, Guo AH, Wei H (1999). Effects of clear plastic film mulch on yield of spring wheat.Field Crop Res 63, 79-86.
[59] Li SY, Verburg PH, Lü SH, Wu JL, Li XB (2012). Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China.Reg Environ Change 12, 461-474.
[60] Liang EY, Wang YF, Xu Y, Liu B, Shao XM (2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan. Trees 24, 363-373.
[61] Matysik J, Alia BB, Mohanty P (2002). Molecular mechanisms of quenching of reaction oxygen species by proline under stress in plants. Curr Sci 82, 525-532.
[62] Maxwell K, Johnson GN (2000). Chlorophyll fluorescence —a practical guide.J Exp Bot 51, 659-668.
[63] McCormick JI, Virgona JM, Kirkegaard JA (2013). Regrowth of spring canola (Brassica napus) after defoliation. Plant Soil 372, 655-668.
[64] Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010). Evolutionary trade-offs in plants mediate the strength of trophic cascades.Science 327, 1642-1644.
[65] Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010). Suites of plant traits in species from different stages of a Mediterranean secondary succession.Plant Biol 12, 183-196.
[66] Ogawa A, Yamauchi A (2006). Root osmotic adjustment under osmotic stress in maize seedlings. 2. Mode of accumulation of several solutes for osmotic adjustment in the root.Plant Prod Sci 9, 39-46.
[67] Ort DR (2001). When there is too much light.Plant Physiol 125, 29-32.
[68] Peng Y, Jiang GM, Liu XH, Niu SL, Liu MZ, Biswas DK (2007). Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in hunshandak sandland, China.J Arid Environ 70, 304-315.
[69] Poot P, Lambers H (2003). Growth responses to waterlogging and drainage of woody Hakea (Proteaceae) seedlings, originating from contrasting habitats in south-wes- tern Australia.Plant Soil 253, 57-70.
[70] Shahba MA, Abbas MS (2014). Drought resistance strategies of seashore paspalum cultivars at different mowing heights.Hortscience 49, 221-229.
[71] Smith MD, Knapp AK (2003). Dominant species maintain ecosystem function with non-random species loss.Ecol Lett 6, 509-517.
[72] Staalduinen MVA, Anten NPR (2005). Differences in the compensatory growth of two co-occurring grass species in relation to water availability.Oecologia 146, 190-199.
[73] Stearns SC (1992). The evolution of life histories. New York: Oxford University Press.
[74] Sun J, Jia YX, Guo SR, Li J, Shu S (2010). Resistance of spinach plants to seawater stress is correlated with higher activity of xanthophyll cycle and better maintenance of chlorophyll metabolism.Photosynthetica 48, 567-579.
[75] Tong C, Wu J, Yong S, Yang J, Yong W (2004). A landscapescale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China.J Arid Environ 59, 133-149.
[76] Vesk PA, Leishman MR, Westoby M (2004). Simple traits do not predict grazing response in Australian dry shrublands and woodlands.J Appl Ecol 41, 22-31.
[77] Wang SP, Wang YF (2001). Study on over-compensation growth of Cleistogens squarrosa population in Inner Mon- golia steppe. Acta Bot Sin 43, 413-418.
[78] Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme.Plant Soil 199, 213-227.
[79] Whitman T, Aarssen LW (2010). The leaf size/number trade-off in herbaceous angiosperms.J Plant Ecol 3, 49-58.
[80] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature 428, 821-827.
[81] Xiu H (2015). Changes of protective enzyme activity and MDA content in leaves of Agropyron cristatum under gra- zing stress. Agr Sci Technol 16, 22-24.
[82] Xu MY, Xie F, Wang K (2014). Response of vegetation and soil carbon and nitrogen storage to grazing intensity in semi-arid grasslands in the agro-pastoral zone of Northern China. PLoS One 9, e96604.
[83] Yan L, Zhou G, Zhang F (2013). Effects of different grazing intensities on grassland production in China: a meta- analysis.PLoS One 8, e81466.
[84] Zai XM, Zhu SN, Qin P, Wang XY, Che L, Luo FX (2012). Effect of glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 50, 323-328.
[85] Zhang ZP, Miao MM, Wang CL (2015). Effects of ala on photosynthesis, antioxidant enzyme activity, and gene expression, and regulation of proline accumulation in tomato seedlings under NaCl stress.J Plant Growth Regul 34, 637-650.
[86] Zhao W, Chen SP, Han XG, Lin GH (2009). Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecol Res 24, 99-108.
[87] Zheng SX, Lan ZC, Li WH, Shao RX, Shan YM, Wan HW, Taube F, Bai YF (2011). Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant Soil 340, 141-155.
[88] Zhou RL, Zhao HL (2004). Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in Alpine habitat, related to freezing tolerance.Phy- siol Plantarum 121, 399-408.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[6] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[7] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[8] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .
[9] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[10] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .