Chin Bull Bot ›› 2011, Vol. 46 ›› Issue (5): 514-524.doi: 10.3724/SP.J.1259.2011.00514

Previous Articles     Next Articles

Identification of Genes with Soybean Resistance to Common Cutworm by Association Analysis

Hui Wang, Zhongjie Gao, Dan Zhang, Hao Cheng, Deyue Yu*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement; National Center for Soybean Improvement; Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-03-24 Revised:2011-05-16 Online:2011-09-01 Published:2011-09-01
  • Contact: Deyue Yu E-mail:dyyu@njau.edu.cn

Abstract: We used 135 genome-wide simple sequence repeat (SSR) markers to assess genetic diversity, population structure and linkage disequilibrium (LD) of 196 soybean landraces. On the basis of estimated population structure, we conducted association mapping for soybean resistance to common cutworm (CCW) using genomic-wide mapping strategies and detected the elite alleles of soybean resistance to CCW, along with their carriers. In addition to wide geographic origin, the population showed extensive genetic variation, and 17.9% of the SSR pairs were in LD (with D'>0, P<0.05). The extent of LD was > 6.61 cM with genetic distance of locus pairs for the loci in the same linkage group (LG). Association analysis revealed 7 SSRs associated with soybean resistance to CCW (P<0.01): 4 accounted for >10% of the total genetic variation for resistance; 6 located in the linkage groups reported to be related to soybean resistance to insects. Allele effect analysis revealed that the alleles related to larval weight of CCW mainly had a negative effect, the allele Sat_334-A208 showing the largest negative effect (43.9%). The alleles related to leaf consumption of single larva (LCL) and pupal weight (PW) of CCW mainly had a positive effect, the allele Satt199-A186 showing the largest positive effect for LCL (36.4%) and the allele Sat_320-A286, the largest positive effect for PW (31.4%).

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Lipoid Bodies in Plant Tissues[J]. Chin Bull Bot, 1994, 11(04): 49 -51 .
[2] CHENG Hong-Yan. Introduction of State Key Laboratory of Biomembrane and Membrane Biotechnology[J]. Chin Bull Bot, 1998, 15(04): 78 .
[3] Liu Dong-zhuo and Li Lan. The Karyotype Analysis of Solanum pseudocapsicum[J]. Chin Bull Bot, 1992, 9(03): 50 .
[4] WANG Bao-Shan;LI De-Quan;ZHAO Shi-Jie;MENG Qing-Wei and ZOU Qi. Effects of Iso-osmotic NaCl and KCl Stress on Growth and Gas Exchange of Sorghum Seedlings[J]. Chin Bull Bot, 1999, 16(04): 449 -453 .
[5] LI Yao-Dong WEI Yu-Ning XU Ben-Mei. Study on the ABA Content and SOD Activity in Ancient Lotus and Modern Lotus Seeds[J]. Chin Bull Bot, 2000, 17(05): 439 -442 .
[6] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[7] WANG Ting SU Ying-Juan ZHU Jian-Ming HUANG Chao LI Xue-Yan. PCR_RFLP Analysis of rbc L Genes in Taxaceae and Related Taxa[J]. Chin Bull Bot, 2001, 18(06): 714 -721 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 51 .
[9] Dong Shu-ting, Hu Chang-hao, Yue Shou-song, Wang Qun-ying, Gao Rong-qi, Pan Zi-long. The Characteristics of Canopy Photosynthesis of Summer Corn (Zea mays) and its Relation with Canopy Structure and Ecological Conditions[J]. Chin J Plan Ecolo, 1992, 16(4): 372 -378 .
[10] YANG Wei, YE Qi-Gang, LI Zuo-Zhou, HUANG Hong-Wen. GENETIC DIFFERENTIATION OF QUANTITATIVE TRAITS AND LOCAL ADAPTABILITY OF REMNANT POPULATIONS OF ISOETES SINENSIS AND IMPLICATIONS FOR CONSERVATION AND GENETIC REINFORCEMENT[J]. Chin J Plan Ecolo, 2008, 32(1): 143 -151 .