Chinese Bulletin of Botany ›› 2010, Vol. 45 ›› Issue (03): 307-318.doi: 10.3969/j.issn.1674-3466.2010.03.002

• 特邀综述 • Previous Articles     Next Articles

Regulation of Plant Anthocyanin Synthesis and Pigmentation by Environmental Factors

Ke Hu; Keting Han; Silan Dai*   

  1. College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
  • Received:2009-11-05 Revised:2009-12-14 Online:2010-05-01 Published:2010-03-01
  • Contact: Silan Dai

Abstract: Anthocyanin is one of the most important plant pigments for the color of flowers, fruits and seedlings. Anthocyanin synthesis and accumulation are closely related to plant growth and development and are subject to internal and external factors. Activation of the anthocyanin pathway and accumulation of the pigment require many environmental signals. Many studies have shown that environmental factors induce anthocyanin accumulation via the activation of anthocyanin biosynthetic genes. This paper reviews the effect of major environmental factors on gene expression patterns of anthocyanin synthesis and regulation of anthocyanin accumulation and stability. Light is one of the most important stimulators, and light quality is more important than light intensity. Low temperatures increase and high temperatures decrease anthocyanin concentration. Most of the structural and regulation genes involved in anthocyanin biosynthesis can be regulated by different sugars. Three aspects demand further research: the relationship between flower development and flower pigmentation, the response of flower color to environmental factors, and the resistance mechanism of anthocyanin to stress. Controlling flower color by environmental factors will greatly improve the quality of ornamentals.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chinese Bulletin of Botany, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chinese Bulletin of Botany, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chinese Bulletin of Botany, 1985, 3(01): 57 -58 .
[4] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chinese Bulletin of Botany, 1999, 16(04): 470 -476 .
[5] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chinese Bulletin of Botany, 2003, 20(03): 264 -269 .
[6] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chinese Bulletin of Botany, 2001, 18(05): 554 -559 .
[7] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chinese Bulletin of Botany, 2010, 45(01): 66 -72 .
[8] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chinese Bulletin of Botany, 2009, 44(02): 178 -184 .
[9] Li Yunxiang, Liu Yucheng, Zhong Zhangcheng. Quantitative Structure and Dynamics of Leaf Populations of Gordonia acuminata on Jinyun Mountain[J]. Chin J Plan Ecolo, 1997, 21(1): 67 -76 .
[10] TANG Meng-Ping, ZHOU Guo-Mo, SHI Yong-Jun, CHEN Yong-Gang, WU Ya-Qi, ZHAO Min-Shui. STUDY OF DOMINANT PLANT POPULATIONS AND THEIR SPATIAL PATTERNS IN EVERGREEN BROADLEAVED FOREST IN TIANMU MOUNTAIN, CHINA[J]. Chin J Plan Ecolo, 2006, 30(5): 743 -752 .