Chin Bull Bot ›› 2010, Vol. 45 ›› Issue (06): 689-697.doi: 10.3969/j.issn.1674-3466.2010.06.006

Previous Articles     Next Articles

Physiological Responses of Apocynum venetum to Different Levels of Salt Stress

Jianfeng Ning1, Qingsong Zheng2, Xianzhong Zou1*, Lili Sun1, Yao Yao2, Yong Chen1, Jinlong Wu1, Lan Wei1   

  1. 1Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Soil and Fertilizer Institute, Guangdong
    Academy of Agricultural Sciences, Guangzhou 510640, China;

    2Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2009-12-03 Revised:2010-02-27 Online:2010-09-20 Published:2010-11-01
  • Contact: Xianzhong Zou

Abstract: To understand the responses of Apocynum venetum to various levels of salt stress, we conducted the experiment. The pot experiments were in a net room to study the effects of NaCl at different concentrations (100–400 mmol·L–1) on plant growth and several physiological characteristics of A. venetum. An amount of 100 mmol·L–1NaCl reduced the plant fresh weight significantly but did not affect plant dry weight. The fresh weight and dry weight of A. venetum decreased with increasing NaCl concentrations. Leaf malondialdehyde content, electrolyte leakage percentage and Na+ content in root and shoot were all elevated. K+ content in root and shoot and Ca2+ content in shoot decreased significantly. However, Ca2+ content in roots grown under all NaCl stresses was unaffected. Ratios of K+/Na+ and Ca2+/Na+ in plant decreased with increasing NaCl concentration. Salt stress markedly promoted the selective absorption of K+ and Ca2+ in root and selective transportation of K+. Contents of proline and soluble sugar increased with increasing NaCl concentration (≤200 mmol·L–1NaCl). Nevertheless, contents of proline and soluble sugar gradually decreased with stresses increasing (>200 mmol·L–1NaCl). In general, adaptation to salinity (≤200 mmol·L–1NaCl) in A. venetum was mainly caused by inorganic ion accumulation, organic solute synthesis, strong K+, Ca2+ selective absorption and transportation.

No related articles found!
Full text



[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .