Chinese Bulletin of Botany ›› 2015, Vol. 50 ›› Issue (2): 255-262.doi: 10.3724/SP.J.1259.2015.00255

• SPECIAL TOPICS • Previous Articles     Next Articles

Progress and Prospects in the Research on Wheat Receptor-like Kinases and Derivative Proteins

Hefei Wang1, 2, Xue Li1, Lingli Dong2, Juncheng Zhang2, Maolin Zhao2, Guozhen Xing1, Daowen Wang2, *, Wenming Zheng1, *   

  1. 1School of Life Science and State Key Laboratory of Wheat and Maize Crops, Henan Agricultural University, Zhengzhou 450002, China
    2The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2014-03-14 Accepted:2014-04-16 Online:2015-04-10 Published:2015-03-01
  • Contact: Wang Daowen,Zheng Wenming;
  • About author:

    ? These authors contributed equally to this paper


In recent years, an increasing amount of genetic and genomic studies have shown that receptor-like kinases (RLKs) and their derivative proteins—receptor-like cytoplasmic kinases (RLCKs) and receptor-like proteins (RLPs)—play important roles in the development and growth of plants and their responses to adverse environments. This paper (1) reviews briefly the main general findings in the research into plant RLKs and derivative proteins, and (2) discusses in more detail the achievements, limitations and prospects in studies of wheat RLK, RLCK and RLP proteins. The information will be useful for further investigations of the structure and function of RLKs and derivative proteins in wheat.

Figure 1

A diagram illustrating the 12 subdomains (indicated by Roman numerals) in the kinase domain of typical RLKs (Stone and Walker, 1995; Dardick and Ronald, 2006) The conserved amino acid motifs or residues identified in some of the subdomains are depicted. In the depicted motifs, the letter x marks the residue that is not conserved. The RD element (shown in bold) present in the motif HRDLKxxN of subdomain VIb has been used for dividing typical RLKs into RD, non-RD and RD-minus classes"

Table 1

A list of the RLK, RLCK and RLP proteins that have been studied in more detail in wheat"

名称 一级
调控(参与)的性状 功能验证方法 激酶域
基因分离方法 参考文献
TaRLK-R1, R2, R3 RLK Non-RD 调控R基因介导的小麦对条锈病菌的专化抗性 病毒诱导基因沉默(VIGS) TaRLK-R3具有自身磷酸化活性 同源基因克隆 Zhou et al., 2007
TaSERK1, 2, 3 RLK RD TaSERK1和TaSERK2可能参与小麦体细胞胚发育,TaSERK3可能参与小麦油菜素内酯信号传递 未验证 待确定 同源基因克隆 Singla et al., 2008
WKS1 (Yr36) RLCK Non-RD 控制温度依赖性的、小麦对条锈病菌的广谱抗性 缺失突变体、转基因 具有丝/苏氨酸激酶活性 图位克隆 Fu et al., 2009
TaRPK1-2G RLCK RD 受白粉病菌和茉莉酸甲酯处理诱导,参与小麦对白粉病菌的抗性 VIGS 待确定 同源基因克隆 Qin et al., 2012
WELP RLK RD 受脱水、高盐、高温胁迫诱导,可能参与小麦对非生物逆境的耐性 未验证 待确定 同源基因克隆 Zheng et al., 2012
TaER1, 2 RLK RD 在幼嫩组织和器官中表达量较高,受多种环境胁迫诱导,可能参与小麦生长发育以及胁迫耐性的调控 未验证 待确定 同源基因克隆 Huang et al., 2013
RLP1.1 RLP - 调控小麦对条锈病菌的过敏抗性 VIGS、转基因 - 同源基因克隆 Jiang et al., 2013
TaCRK1 RLK RD 受小麦纹枯病菌诱导,但表达降低后不影响植株的抗性 VIGS 待确定 同源基因克隆 Yang et al., 2013
CERK1 RLK RD 与CEBiP互作,激活真菌几丁质诱导的防御反应,调控小麦对真菌的抗性 VIGS 待确定 同源基因克隆 Lee et al., 2014
CEBiP RLP - 与CERK1互作,激活真菌几丁质诱导的防御反应,调控小麦对真菌的抗性 VIGS - 同源基因克隆 Lee et al., 2014
1 Afzal AJ, Lightfoot DA (2007). Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: preparation for a functional analysis.Protein Expr Purif 53, 346-355.
2 Afzal AJ, Wood AJ, Lightfoot DA (2008). Plant receptor-like serine threonine kinases: roles in signaling and plant defense.Mol Plant Microbe Interact 21, 507-517.
3 Altenbach SB, Vensel WH, DuPont FM (2010). Integration of transcriptomic and proteomic data from a single wheat cultivar provides new tools for understanding the roles of individual alpha gliadin proteins in flour quality and celiac disease.J Cereal Sci 52, 143-151.
4 Antolín-Llovera M, Ried MK, Binder A, Parniske M (2012). Receptor kinase signaling pathways in plant-microbe interactions.Annu Rev Phytopathol 50, 451-473.
5 Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo NX, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012). Analysis of the bread wheat genome using whole-genome shotgun sequencing.Nature 491, 705-710.
6 Castells E, Casacuberta JM (2007). Signaling through kinase-defective domains: the prevalence of atypical receptor-like kinases in plants.J Exp Bot 58, 3503-3511.
7 Chevalier D, Batoux M, Fulton L, Pfister K, Yadav RK, Schellenberg M, Schneitz K (2005). STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis.Proc Natl Acad Sci USA 102, 9074-9079.
8 Dardick C, Ronald P (2006). Plant and animal pathogen recognition receptors signal through non-RD kinases.PLoS Pathog 2, e2.
9 Dardick C, Chen J, Richter T, Ouyang S, Ronald P (2007). The rice kinase database. A phylogenomic database for the rice kinome.Plant Physiol 143, 579-586.
10 Dardick C, Schwessinger B, Ronald P (2012). Non-ar- ginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures.Curr Opin Plant Biol 15, 358-366.
11 De Smet, Voß U, Jurgens G, Beeckman T (2009). Receptor-like kinases shape the plant.Nat Cell Biol 11, 1166-1173.
12 Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J (2009). A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357-1360.
13 Gish LA, Clark SE (2011). The RLK/Pelle family of kinases.Plant J 66, 117-127.
14 He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010). Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv. ‘Stewart’) with improved efficiency.J Exp Bot 61, 1567-1581.
15 Huang LZ, Yasir TA, Phillips AL, Hu YG (2013). Isolation and characterization of ERECTA genes and their expression patterns in common wheat (Triticum aestivum L.).Aust J Crop Sci 7, 381-390.
16 Idänheimo N, Gauthier A, Salojärvi J, Siligato R, Brosché M, Kollist H, Mähönen AP, Kangasjärvi J, Wrzaczek M (2014). The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress.Biochem Biophys Res Commun 445, 457-462.
17 Jeong S, Trotochaud AE, Clark SE (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase.Plant Cell 11, 1925-1934.
18 Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, Jing RL, Zhang C, Ma YZ, Gao LF, Gao C, Spannagl M, Mayer KFX, Li D, Pan SK, Zheng FY, Hu Q, Xia XC, Li JW, Liang QS, Chen J, Wicker T, Gou CY, Kuang HH, He GY, Luo YD, Keller B, Xia QJ, Lu P, Wang JY, Zou HF, Zhang RZ, Xu JY, Gao JL, Middleton C, Quan ZW, Liu GM, Wang J, International Wheat Genome Sequencing Consortium, Yang HM, Liu X, He ZH, Mao L, Wang J (2013). Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation.Nature 496, 91-95.
19 Jiang ZN, Ge S, Xing LP, Han DJ, Kang ZS, Zhang GQ, Wang XJ, Wang X, Chen PD, Cao AZ (2013). RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici.J Exp Bot 64, 3735-3746.
20 Johnson LN, Nobel MEM, Owen DJ (1996). Active and inactive protein kinases: structural basis for regulation.Cell 85, 149-158.
21 Lee WS, Rudd JJ, Hammond-Kosack KE, Kanyuka K (2014). Mycosphaerella graminicola LysM effector-me- diated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat.Mol Plant Microbe Interact 27, 236-243.
22 Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009). Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes.Plant Physiol 150, 12-26.
23 Lehti-Shiu MD, Shiu SH (2012). Diversity, classification and function of the plant protein kinase superfamily.Philos Trans R Soc Lond B Biol Sci 367, 2619-2639.
24 Lehti-Shiu MD, Zou C, Shiu SH (2012). Origin, diversity, expansion history, and functional evolution of the plant receptor-like kinase/pelle family. In: Tax F, Kemmerling B, eds. Signaling and Communication in Plants 13. Berlin: Springer-Verlag. pp. 1-22.
25 Lin WW, Li B, Lu DP, Chen SX, Zhu N, He P, Shan LB (2014). Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity.Proc Natl Acad Sci USA 111, 3632-3637.
26 Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H, Zhang C, Fan HJ, Li D, Dong LL, Tao Y, Gao C, Wu HL, Li YW, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, Jian JB, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, Zhang BR, Wu HJ, Tang DZ, Shen QH, Xue PY, Zou SH, Wang XJ, Liu X, Wang FM, Yang YP, An XL, Dong ZY, Zhang KP, Zhang XQ, Luo MC, Dvorak J, Tong YP, Wang J, Yang HM, Li ZS, Wang DW, Zhang AM, Wang J (2013). Draft genome of the wheat A-genome progenitor Triticum urartu.Nature 496, 87-90.
27 Llompart B, Castells E, Río A, Roca R, Ferrando A, Stiefel V, Puigdomènech P, Casacuberta JM (2003). The direct activation of MIK, a germinal center kinase (GCK)-like kinase, by MARK, a maize atypical receptor kinase, suggests a new mechanism for signaling through kinase-dead receptors.J Biol Chem 278, 48105-48111.
28 Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G, Graham NS, Foulkes J, Granier C, Greb T, Grossniklaus U, Hammond JP, Heidstra R, Hodgman C, Hothorn M, Inzé D, Østergaard L, Russinova E, Simon R, Skirycz A, Stahl Y, Zipfel C, De Smet I (2012). Tackling drought stress: receptor-like kinases present new approaches.Plant Cell 24, 2262-2278.
29 Müller R, Bleckmann A, Simon R (2008). The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLA- VATA1.Plant Cell 20, 934-946.
30 Muschietti J, Eyal Y, McCormick S (1998). Pollen tube localization implies a role in pollen-pistil interactions for the tomato receptor-like protein kinases LePRK1 and LePRK2.Plant Cell 103, 319-330.
31 Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2013). Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress.J Exp Bot 64, 445-458.
32 Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009). The Sorghum bicolor genome and the diversification of grasses.Nature 457, 551-556.
33 Prince DC, Drurey C, Zipfel C, Hogenhout S (2014). The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE 1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis.Plant Physiol 164, 2207-2219.
34 Sanabria NM, Huang JC, Dubery IA (2010). Self/non-self perception in plants in innate immunity and defense. Self/nonself 1, 40-54.
35 Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du FY, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen WZ, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang LX, Yu Y, Zhang LF, Zhou SG, Zhu QH, Bennetzen JL, Dawe RK, Jiang JM, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009). The B73 maize genome: complexity, diversity, and dynamics.Science 326, 1112-1115.
36 Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, Liu JX, Xi JJ, Qiu JL, Gao CX (2013). Targeted genome modification of crop plants using a CRISPR-Cas system.Nat Biotechnol 31, 686-688.
37 Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii- Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64, 204-214.
38 Shiu SH, Bleecker AB (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis.Plant Physiol 132, 530-543.
39 Singla B, Khurana JP, Khurana P (2008). Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum.Plant Cell Rep 27, 833-843.
40 Stone JM, Walker JC (1995). Plant protein kinase families and signal transduction.Plant Physiol 108, 451-457.
41 Tang WQ, Kim TW, Oses-Prieto JA, Sun Y, Deng ZP, Zhu SW, Wang RJ, Burlingame AL, Wang ZY (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis.Science 321, 557-560.
42 The International Brachypodium Initiative (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon.Nature 463, 763-768.
43 The International Barley Genome Sequencing Consortium (2012). A physical, genetic and functional sequence assembly of the barley genome.Nature 491, 711-716.
44 Upadhyay SK, Kumar J, Alok A, Tuli R (2013). RNA- guided genome editing for target gene mutations in wh- eat.G3 3, 2233-2238.
45 Weil CF (2009). TILLING in grass species.Plant Physiol 149, 158-164.
46 Yang K, Rong W, Qi L, Li JR, Wei XN, Zhang ZY (2013). Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis.Sci Rep 3, 3021.
47 Yuan C, Li C, Yan LJ, Jackson AO, Liu ZY, Han CG, Yu JL, Li DW (2011). A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.PLoS One 6, e26468.
48 Zheng WJ, Xu ZS, Chen M, Li LC, Chai SC, Ma YZ (2012). Isolation and characterization of receptor-like protein kinase WELP1 in wheat.Afr J Microbiol Res 6, 2410-2418.
49 Zhou HB, Li SF, Deng ZY, Wang XP, Chen T, Zhang JS, Chen SY, Ling HQ, Zhang AM, Wang DW, Zhang XQ (2007). Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection.Plant J 52, 420-434.
No related articles found!
Full text



[1] . [J]. Chinese Bulletin of Botany, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chinese Bulletin of Botany, 1999, 16(04): 429 -432 .
[3] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chinese Bulletin of Botany, 1999, 16(04): 425 -428 .
[4] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chinese Bulletin of Botany, 2001, 18(06): 727 -734 .
[5] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chinese Bulletin of Botany, 2010, 45(05): 566 -578 .
[6] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chinese Bulletin of Botany, 2017, 52(2): 218 -224 .
[7] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chinese Bulletin of Botany, 2017, 52(2): 235 -240 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] WEI Jie, YU Hui, KUANG Ting-Yun, BEN Gui-Ying. Ultrastructure of Polygonum viviparum L. Grown at Different Elevations on Qinghai Plateau[J]. Chin J Plan Ecolo, 2000, 24(3): 304 -307 .