Chinese Bulletin of Botany ›› 2011, Vol. 46 ›› Issue (5): 575-585.doi: 10.3724/SP.J.1259.2011.00575

Previous Articles     Next Articles

Systematic Metabolic Engineering of ω-7 Fatty Acids in Plants

Yongmei Wu, Xue Mao, Shujian Wang, Jinai Xue, Xiaoyun Jia, Jiping Wang, Zhirong Yang, Runzhi Li*   

  1. Center for Agricultural Biotechnology, Shanxi Agricultural University, Taigu 030801, China
  • Received:2011-04-06 Revised:2011-07-07 Online:2011-09-01 Published:2011-09-01
  • Contact: Runzhi Li
  • Supported by:

    ;Key Project of Chinese Ministry of Education;Natural Science Foundation of Shanxi; Program for the Top Young Academic Leaders of Higher Institutions of Shanxi;Breeding Fund of Shanxi Agricultural University;Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China

Abstract: Omega-7(ω-7) fatty acids (FAs) such as C16:1Δ9, C18:1Δ11 and C20:1Δ13, particularly palmitoleate (C16:1Δ9), are an important contributor to human health and are highly valued in pharmaceutical and industrial applications. A number of natural wild plants can synthesize high levels of these unusual FAs in seeds, but low yields and poor agronomic properties of those plants preclude their commercial use for ω-7 FA production. The lipid metabolic pathway has been genetically modified to develop engineered common oil crops that can highly produce and accumulate ω-7 FAs in seeds and represents a key hot-spot in biotechnology and renewable bio-based resources. The major targets for modification in the oil biosynthesis pathway include expression of various Δ9 desaturases, increasing substrate (C16:0) levels, co-expression of plastidial and endoplasmic reticulum Δ9 desaturases and optimizing the metabolic flux into triacylglycerols (TAGs). Here, we summarize our current understanding of ω-7 FA biosynthesis and its regulation and describe the advances in ω-7 FA metabolic engineering. We also discuss the current “bottleneck” in this field and potential breakthroughs by combining lipidomics, transgenics and other “-omics”. These new tools will provide a valued platform for mining genes involved in ω-7 FA biosynthesis and regulation. With this knowledge, we will develop more rational designs for metabolically engineering the commercial production of ω-7 FA in established oilseeds for human health and sustainable development of the related industry.

CLC Number: 

  • 中图分类号Q81

No related articles found!
Full text



[1] . [J]. Chinese Bulletin of Botany, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chinese Bulletin of Botany, 1999, 16(04): 429 -432 .
[3] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chinese Bulletin of Botany, 1999, 16(04): 425 -428 .
[4] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chinese Bulletin of Botany, 2001, 18(06): 727 -734 .
[5] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chinese Bulletin of Botany, 2010, 45(05): 566 -578 .
[6] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chinese Bulletin of Botany, 2017, 52(2): 218 -224 .
[7] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chinese Bulletin of Botany, 2017, 52(2): 235 -240 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] WEI Jie, YU Hui, KUANG Ting-Yun, BEN Gui-Ying. Ultrastructure of Polygonum viviparum L. Grown at Different Elevations on Qinghai Plateau[J]. Chin J Plan Ecolo, 2000, 24(3): 304 -307 .