Chinese Bulletin of Botany ›› 2020, Vol. 55 ›› Issue (4): 0-0.doi: 10.11983/CBB19228

   

Phylogenetic study of Amaranthaceae s.l. based on multiple plastid DNA fragments

Gang Yao2   

  • Received:2019-11-23 Revised:2020-03-01 Online:2020-05-21 Published:2020-07-01
  • Contact: Gang Yao E-mail:yaogang1029@163.com

Abstract: Amaranthaceae s.l., including Amaranthaceae s.s. and Chenopodiaceae, is the second largest family in Caryophyllales. However, the family status of Chenopodiaceae is disputable and phylogenetic relationships among all of the subfamilies circumscribed within Amaranthaceae s.l. have not been well resolved to date. In the present study, phylogeny of Amaranthaceae s.l. was reconstructed based on a comprehensive taxonomic sampling of all subfamilies circumscribed using eight plastid DNA fragments, and a molecular dating analysis of the family was also conducted. Results revealed that, the monophyly of Amaranthaceae both in broad and narrow sense was strongly supported, but the monophyly of Chenopodiaceae was rejected. Thus the concept of Amaranthaceae s.l. is accepted here. Phylogenetic positions of all subfamilies were all resolved with strong support values, except that the position of the subfamily Polycnemoideae was weakly supported. Additionally, the crown age of Amaranthaceae s.l. was estimated at ca. 69.9 million years ago (Ma) in the late Cretaceous, with a period of rapid divergence may have occurred near the Cretaceous-Paleogene (K-Pg) boundary (ca. 66.0 Ma).

孔宪武, 简焯坡 (1979). 藜科 & 苋科. 中国植物志. 第25卷第2分册. 北京: 科学出版社.

Angiosperm Phylogeny Group (APG) (2016). An update of the Angiosperm Phylogeny Group classi?cation for the orders and families of ?owering plants: APG IV. Bot J Linn Soc 181, 1–20.

Bentham G, Hooker JD (1880) Genera plantarum. Vol 3. London: Lovell Reeve.

Black JM (1924). Flora of South Australia. Vol 2. Adelaide: British Science Guild.

Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS (2009). Phylogeny of the Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth di?erentiation in the core Caryophyllales. Int J Plant Sci 170, 627–643.

Christenhusz MJM, Byng JW (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217.

Cronquist A (1988). The evolution and classification of flowering plants. 2nd ed. New York: The New York Botanical Garden.

Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002). Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am J Bot 89, 132–144.

Drummond AJ, Suchard MA, Dong X, Rambaut A (2012). Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Mol Biol Evol 29, 1967–1973.

Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJD, Clements MA, Arroyo MTK, Leebens-Mack J, Endara L, Kriebel R, Neubig KM, Whitten WM, Williams NH, Cameron KM (2015). Orchid phylogenomics and multiple drivers of their extraordinary diversi?cation. Proc R Soc B Biol Sci 282, 2108–2111.

Hernández-Ledesma P, Berendsohn WG, Borsch T, Mering SV, Akhani H, Arias S, Casta?eda-Noa I, Eggli U, Eriksson R, Flores-Olvera H, Fuentes-Bazán S, Kadereit G, Klak C, Korotkova N, Ny?eler R, Ocampo G, Ochoterena H, Oxelman B, Sanchez RKRA, Schlumpberger BO, Uotila P (2015). A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia 45, 281–383.
Kadereit G, Borsch T, Weising K, Freitag H (2003). Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164, 959–986.

Kadereit G, Gotzek D, Jacobs S, Freitag H (2005). Origin and age of Australian Chenopodiaceae. Org Divers Evol 5, 59–80.

Kadereit G, Ackerly D, Pirie MD (2012). A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proc R Soc Lond Ser B-Biol Sci 279, 3304–3311.
Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772–780.

Koenen EJM, Clarkson JJ, Pennington TD, Chatrou LW (2015). Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytol 207, 327–339.

Kühn U, Bittrich V, Carolin R, Freitag H, Hedge IC, Uotila P, Wilson PG (1993). Chenopodiaceae. In: Kubitzki K, ed. Families and genera of vascular plants. Vol 2. Berlin: Springer. pp. 253–281.

Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner MA, Fritsch PW, Cai J, Luo Y, Wang H, van der Bank M, Zhang SD, Wang QF, Wang J, Zhang ZR, Fu CN, Yang J, Hollingsworth PM, Chase MW, Soltis DE, Soltis PS, Li DZ (2019). Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants 5, 461.

Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015). A metacalibrated time-tree cocuments the early rise of ?owering plant phylogenetic diversity. New Phytol 207, 437–453.

Masson R, Kadereit G (2013). Phylogeny of Polycnemoideae (Amaranthaceae): Implications for biogeography, character evolution and taxonomy. Taxon 62, 100–111.

Miller MA, Pfei?er W, Schwartz T (2010). Creating the CIPRES Science Gateway for inference of large phylogenetics trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA. pp. 1–8.

Moquin-Tandon A (1837). Note sur le genre Polycnemum et sur une nouvelle tribu de la famille des Paronychees. Ann Sci Nat 7, 33–42.

Müller K, Borsch T (2005). Phylogenetics of Amaranthaceae based on matK/trnK sequence data –evidence from parsimony, likelihood, and Bayesian analyses. Ann Missouri Bot Gard 92, 66–102.

Posada D (2008). jModelTest: phylogenetic model averaging. Mol Biol Evol 25, 1253–1256.

Pratt DB (2003). Phylogeny and morphological evolution of the Chenopodiaceae-Amaranthaceae alliance. Ph. D. thesis. Ames: Iowa State University.
Rambaut A (2012). FigTree version 1.4.0. Available from: http://tree.bio.ed.ac.uk/software/figtree/.

Ronquist F, Huelsenbeck JP (2003). MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.

Scott AJ (1977a). Proposal to conserve the family name Salsolaceae Moquin-Tandon (1849) (Caryophyllales) when it is treated as a separate family from the Chenopodiaceae Ventenat (1799). Taxon 26, 246.

Scott AJ (1977b). Reinstatement and revision of Salicorniaceae J.Agardh. Bot J Linn Soc 75, 357–374.

Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu YL, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011). Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98, 704–730.

Soriano A (1944). El género Nitrophila en la Argentina y su posiciónsistemática. Rev Argent Agron 11, 302.

Stamatakis A (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.

Stevens PF (2001 onwards). Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]. Available from: http://www.mobot.org/MOBOT/research/APweb/

Sukhorukov AP, Mavrodiev EV, Struwig M, Nilova MV, Dzhalilova KK, Balandin SA, Erst A, Krinitsyna AA (2015). One-seeded fruits in the core Caryophyllales: Their origin and structural diversity. PLoS ONE 10, e0117974.

Takhtajan A (1997). Diversity and classification of flowering plants. New York: Columbia University Press.

Ulbrich E (1934). Chenopodiaceae. Pages 379–584 in A Engler, K Prantl, eds. Die natu ¨ rlichen P?anzenfamilien. Vol 16c. Leipzig: Engelmann.

Walker JF, Yang Y, Feng T, Timoneda A, Mikenas J, Hutchinson V, Edwards C, Wang N, Ahluwalia S, Olivieri J, Walker-Hale N, Majure LC, Puente R, Kadereit G, Lauterbach M, Eggli U, Flores-Olvera H, Ochoterena H, Brockington SF, Moore MJ, Smith SA (2018). From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight to the evolution of Caryophyllales. Am J Bot 105, 446–462.

Wang W, Ortiz RDC, Jacques FMB, Xiang XG, Li HL, Lin L, Li RQ, Liu Y, Soltis PS, Soltis DE, Chen ZD (2012). Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary. New Phytol 195, 470–478.

Wikstr?m N, Savolainen V, Chase MW (2001). Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Ser B-Biol Sci 268, 2211–2220.

Yang Y, Moore MJ, Brockington SF, Mikenas J, Olivieri J, Walker JF, Smith SA (2018). Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy event in Caryophyllales, including two allopolyploidy event. New Phytol 217, 855–870.

Yao G, Jin JJ, Li HT, Yang JB, Mandala VS, Croley M, Mostow R, Douglas NA, Chase MW, Christenhusz MJM, Soltis DE, Soltis PS, Smith SA, Brockington SF, Moore MJ, Yi TS, Li DZ (2019). Plastid phylogenomic insights into the evolution of Caryophyllales. Mol Phylogenet Evol 134, 74–86.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhonghua Wang;*;Tingjie Yu. Research Advances in the Key Enzymes Involved in Rice Starch Quality Regulation[J]. Chinese Bulletin of Botany, 2008, 25(06): 741 -752 .
[2] . [J]. Chinese Bulletin of Botany, 1996, 13(专辑): 76 .
[3] Shuzhen Zhao;Yuan Ruan;Baoshan Wang. Tissue Culture and Plant Regeneration from Immature Inflorescence Explants of Suaeda salsa[J]. Chinese Bulletin of Botany, 2006, 23(1): 52 -55 .
[4] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chinese Bulletin of Botany, 1999, 16(04): 429 -432 .
[5] HUANG Ji WANG Jian-Fei ZHANG Hong-Sheng. Advances on Plant Pentose Phosphate Pathway and Its Key Enzymes[J]. Chinese Bulletin of Botany, 2004, 21(02): 139 -145 .
[6] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chinese Bulletin of Botany, 2001, 18(06): 727 -734 .
[7] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chinese Bulletin of Botany, 2010, 45(05): 566 -578 .
[8] Mei Bai;Hong Wu*. Recent Progress in Lipid Biosynthesis Regulated by TAG1 in Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2009, 44(06): 735 -741 .
[9] Shikai Hu, Qian Qian. DEAD-box RNA Helicase Regulate rRNA Homeostasis: New Mechanism on Rice Thermotolerance, New Prospective on Rice Molecular Breeding[J]. Chinese Bulletin of Botany, 2016, 51(3): 283 -286 .
[10] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chinese Bulletin of Botany, 2017, 52(2): 218 -224 .