Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (3): 288-292.doi: 10.11983/CBB19035


• COMMENTARIES • Previous Articles     Next Articles

Open a Door of Defenses: Plant Resistosome

Xia Shitou1,*(),Li Xin2,*()   

  1. 1. Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
    2. Michael Smith Laboratories,Department of Botany, University Columbia,Vancouver, BC, V6T 1Z4,Canada
  • Received:2019-02-23 Accepted:2019-04-03 Online:2019-05-20 Published:2019-05-01
  • Contact: Xia Shitou,Li Xin;


Nucleotide binding, leucine-rich repeat (NLR) immune receptors are a major family of plant resistance (R) proteins, which are also found in animals. NLRs turn on immune signaling by recognizing pathogen-specific effectors in plants. Although the first few plant NLR R genes were cloned more than 25 years ago, the activation mechanism remained elusive. No structure is available for the full-length plant NLRs despite attempts over the last 2 decades. Recently, studies from the Chai, Zhou and Wang labs, published in Science, solved the structure of zygote arrest 1 (ZAR1) before and after effector recognition, which fills a huge gap in NLR biology. This mini review briefly summarized these findings and related progresses, and highlighted further challenges in NLR-mediated immune signaling field.

Key words: plant immunity, NLR, ZAR1, allosteric activation, resistosome

Figure 1

PBL2UMP-induced activation and assembly of the ZAR1 resistosome Arabidopsis PBL2 is modified by uridylyl transferase AvrAC, which is an effector protein from Xanthomonas campestris. The uridylylated PBL2 (PBL2UMP) as a ligand is then recruited by the ZAR1-RKS1 complex through interaction with the pseudokinase RKS1. The activation segment of RKS1 becomes stabilized (orange surface) after interacting with the two uridylyl moieties (in sphere) of PBL2UMP, and sterically clashes with ZAR1NBD, causing the latter to rotate outward and consequently release ADP, forming an intermediate ZAR1-RKS1-PBL2UMP complex which allows it to bind dATP/ATP. Binding of dATP/ATP induces structural remodeling and fold switching of ZAR1. The very N-terminal helix (α1, red) of ZAR1 buried in the inactive ZAR1-RKS1 complex becomes solvent-exposed in the activated ZAR1-RKS1-PBL2UMP complex, forming a ZAR1 resistosome pentameric structure through polymerization (a funnel-shaped structure highlighted within the purple frame). CC, NBD, HD1, WHD and LRR are different structural domains of ZAR1."

[1] 施怡婷, 杨淑华 ( 2016). 中国科学家在乙烯信号转导领域取得突破性进展. 植物学报 51, 287-289.
doi: 10.11983/CBB15191
[2] 于倩倩, 孔祥培, 丁兆军 ( 2018). 中国科学家在生长素信号转导领域取得突破性研究进展. 植物学报 50, 535-537.
doi: 10.11983/CBB15115
[3] Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, Newell K, Lawrence GJ, Kobe B, Ellis JG, Anderson PA, Dodds PN ( 2016). Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-ba-sed switch activation model. Plant Cell 28, 146-159.
doi: 10.1105/tpc.15.00303 pmid: 26744216
[4] Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL ( 2011). Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 108, 16463-16468.
doi: 10.1073/pnas.1113726108 pmid: 21911370
[5] Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG ( 2018). Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol 222, 966-980.
[6] Chisholm ST, Coaker G, Day B, Staskawicz BJ ( 2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814.
doi: 10.1016/j.cell.2006.02.008 pmid: 16497589
[7] Cui H, Tsuda K, Parker JE ( 2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66, 487-511.
doi: 10.1146/annurev-arplant-050213-040012 pmid: 25494461
[8] Dodds PN, Rathjen JP ( 2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11, 539-548.
doi: 10.1038/nrg2812 pmid: 20585331
[9] Dong OX, Tong M, Bonardi V, El Kasmi F, Woloshen V, Wünsch LK, Dangl JL, Li X ( 2016). TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. New Phytol 210, 960-973.
doi: 10.1111/nph.13821 pmid: 27074399
[10] Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JD, Sarris PF ( 2016). Pathogen perception by NLRs in plants and animals: parallel worlds. Bioessays 38, 769-781.
doi: 10.1002/bies.201600046 pmid: 27339076
[11] Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, Deng H, Wang J, Chang J, Chai J ( 2013). Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172-175.
doi: 10.1126/science.1236381 pmid: 23765277
[12] Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J ( 2015). Structural and biochemical basis for induced self-propagation of NLRC4. Science 350, 399-404.
doi: 10.1126/science.aac5489 pmid: 26449475
[13] Jones JDG, Dangl JL ( 2006). The plant immune system. Nature 444, 323-329.
doi: 10.1038/nature05286
[14] Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, Desveaux D ( 2013). The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci USA 110, 18722-18727.
[15] Lewis JD, Wu R, Guttman DS, Desveaux D ( 2010). Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS Genet 6, e1000894.
[16] Lukasik E, Takken FL ( 2009). STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol 12, 427-436.
doi: 10.1016/j.pbi.2009.03.001 pmid: 19394891
[17] Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T ( 2016). Crystal structure of NOD2 and 35 its implications in human disease. Nat Commun 7, 11813.
doi: 10.1038/ncomms11813 pmid: 27283905
[18] Maekawa T, Kufer TA, Schulze-Lefert P ( 2011). NLR functions in plant and animal immune systems: so far and yet so close. Nat Immun 12, 817-826.
doi: 10.1038/ni.2083 pmid: 21852785
[19] Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC ( 2005). NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15, 968-973.
doi: 10.1016/j.cub.2005.04.053 pmid: 15916955
[20] Qi D, DeYoung BJ, Innes RW ( 2012). Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol 158, 1819-1832.
doi: 10.1104/pp.112.194035
[21] Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, Staskawicz BJ ( 2018). NRG1 functions downstream of EDS1 to regulate TIR-NLR-me-diated plant immunity in Nicotiana benthamiana. Proc Natl Acad Sci USA 115, E10979-E10987.
[22] Rairdan GJ, Moffett P ( 2006). Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18, 2082-2093.
doi: 10.1105/tpc.106.042747 pmid: 16844906
[23] Reubold TF, Wohlgemuth S, Eschenburg S ( 2011). Crystal structure of full-length Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis. Structure 19, 1074-1083.
doi: 10.1016/j.str.2011.05.013 pmid: 21827944
[24] Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y ( 2005). Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434, 926-933.
doi: 10.1038/nature03465 pmid: 15829969
[25] Schultink A, Qi T, Bally J, Staskawicz B ( 2019). Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4. New Phytol 221, 1001-1009.
[26] Seto D, Koulena N, Lo T, Menna A, Guttman DS, Desveaux D ( 2017). Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related 5 kinases. Nat Plants 3, 17027.
doi: 10.1038/nplants.2017.27 pmid: 28288096
[27] Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ ( 2002). The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14, 2929-2939.
[28] Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M, Arlat M, Chen S, He C, No?l LD, Zhou JM ( 2015). The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295.
doi: 10.1016/j.chom.2015.08.004 pmid: 26355215
[29] Wang J, Wang J, Hu M, Qi J, Wu S, Wang G, Han Z, Qi Y, Gao N, Wang HW, Zhou JM, Chai J ( 2019a). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868.
[30] Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J ( 2019b) . Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870.
[31] Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B, Ellis JG, Dodds PN, Anderson PA ( 2011). An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol Plant Microbe Interact 24, 897-906.
doi: 10.1094/MPMI-03-11-0052
[32] Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, Li X ( 2018). Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytol 222, 938-953.
doi: 10.1111/nph.15665
[33] Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C, Ouyang Q, Zhang X, Mao Y, Wu H ( 2015). Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404-409.
doi: 10.1126/science.aac5789 pmid: 26449474
[34] Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, Scheres SH, Shi Y ( 2015). Atomic structure of the apoptosome: mechanism of cytochrome c- and 25 dATP-mediated activation of Apaf-1. Genes Dev 29, 2349-2361.
doi: 10.1101/gad.272278.115 pmid: 26543158
Full text



[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[7] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[8] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[9] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .
[10] AN Ran, GONG Ji-Rui, YOU Xin, GE Zhi-Wei, DUAN Qing-Wei, YAN Xin. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China[J]. Chin J Plan Ecolo, 2011, 35(4): 389 -401 .