Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (4): 531-538.doi: 10.11983/CBB19025

• TECHNIQUES AND METHODS • Previous Articles     Next Articles

An Effective Method for the Rooting of Tea Cuttings

Liu Xiaomei1,Sun Lili1,*(),Fu Xiangdong2,Liao Hong1   

  1. 1 Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    2 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2019-02-17 Accepted:2019-04-23 Online:2020-01-08 Published:2019-07-01
  • Contact: Sun Lili E-mail:lilionsun@163.com

Abstract:

Tea (Camellia sinensis) is one of the most important beverage crops in the world. With the expanding cultivation area, the demand for tea seedlings is increasing. However, there are many problems with the traditional breeding method for tea plants using cuttings, such as low rooting rate, time consumption and difficulties to obtain materials. Therefore, optimizing the cutting method is of great importance for tea production. In this study, we first changed the culture medium to sponges and found that tea cuttings were able to generate new roots within 1 month on sponges, with rooting rate 32.2%. Second, we optimized the cutting materials by using fresh green tea branches in sponges, and the rooting potential of goung branch maintained with one bud and one leaf is better. In addition, we found that supplying rooting powder to sponges significantly promoted callus formation and new root generation from cuttings. In general, the most effective way was to apply 1.25 g∙L -1 rooting powder to cuttings for 48 h, for a rooting rate of 42.0%. We have established an effective rooting method for tea cuttings by optimizing the culture medium, cutting materials and adding optimal rooting powder. This method could shorten the rooting time, avoid the restriction of cutting materials, and thus effectively reduce the expense of tea cuttings, which has application prospects in tea production.

Key words: tea plant, cuttings, spongy culture, callus, rooting

Figure 1

Procedure of tea plant cutting (1) Tea plant short branch was clipped from long branch, maintained with one bud and one leaf, and cut with some wounds in the bottom of stem; (2) Short branch was fixed by sponge and cultivated in the bottle with tea plant nutrient solution, after the treatment of rooting powder; (3) Callus came out after 20 d of cultivation; (4) Root emerged after 25 d."

Figure 2

Effects of different cultivation matrixes on tea plant rooting ratio (A) Cultivation of tea short branch in red soil from tea garden; (B) Cultivation of tea short branch by hydroponics; (C) Cultivation of tea short branch in sponge; (D) Rooting rate of tea short branch in different cultivation matrixes. Bars=1 cm; *** P≤0.001."

Figure 3

Root development of tea plant cutting seedling (A) Formation of callus in the tea plant cutting seedlings after 20 d cultivation (Bar=2 mm); (B) Formation of roots from the tea cutting seedlings after 25 d (Bar=2 mm); (C) Tea plant growth after 5 months (Bar=10 cm)."

Figure 4

Transection of tea plant cutting seedling (A) Structure of normal stem (Bar=500 μm); (B) Three incisions in stem surface while branch cutting (Bar=500 μm); (C) Structure of callus (Bar=500 μm); (D) Structure of root emerging from stem incision (Bar=100 μm)"

Figure 5

Effects of different branch lengths on rooting rate of tea plant (A) Schematic diagram of short branch cutting length (Bar=1 cm); (B) Schematic diagram of long branch cutting length (Bar= 1 cm); (C) Rooting rate of different tea plant branch lengths. *** P≤0.001"

Figure 6

Effects of different rooting powder concentrations and different treatment time on the rates of callus formation, root formation and mortality Short branches were cultured in sponge culture matrix, after treated with 3 concentrations (1.25, 2.5 and 5 g∙L-1) of rooting powders, for 0, 6, 12 and 48 h, respectively. The rate of callus formation (A)-(C), root formation (D)-(F) and mortality (G)-(I) of tea plants were counted and calculated after 1 month. Different lowercase letters indicate significant differences among treatments (P≤0.05)."

[1] 艾文琴, 姜瀚原, 李欣欣, 廖红 ( 2018). 一种高效研究大豆根瘤共生固氮的营养液栽培体系. 植物学报 53, 519-527.
[2] 陈卡宾 ( 1997). 茶园心土的选取与铺盖技术. 四川农业科技 ( 1), 43-44.
[3] 董丽娟, 贺利雄 ( 1991). 茶树插穗成熟度对扦插苗影响的观测. 茶叶通讯 ( 4), 28-31.
[4] 郭素娟 ( 1997). 林木扦插生根的解剖学及生理学研究进展. 北京林业大学学报 19(4), 64-69.
[5] 梁月荣, 刘祖生, 庄晚芳 ( 1985). 茶树插穗发根的解剖学和生物化学研究. 茶叶科学 5, 19-28.
[6] 刘国华, 陈莹, 杨士虎, 张宇彬 ( 2018). 不同激素对白茶茶树扦插生根的影响. 安徽农学通报 24, 69-70.
[7] 刘饶, 朱焕明, 刘慧平, 吴锡金, 毛昌会, 叶有奇 ( 2010). 白玉仙茶扦插育苗技术研究. 茶叶 36, 19-20, 18.
[8] 刘任坚, 刘远星, 王莹茜, 刘少群 ( 2018). 不同遮光处理对工厂化育茶苗的影响. 中国茶叶 40(3), 25-28, 33.
[9] 刘诗贤, 刘腾飞 ( 2015). 不同处理对北方茶树扦插成活率的研究. 茶叶通讯 42(3), 25-28.
[10] 潘根生, 小西茂毅 ( 1995). 供铝条件下氮对茶苗生长发育的影响. 浙江农业大学学报 21, 461-464.
[11] 祁琳, 柏新富, 牛玮浩, 张振华 ( 2016). 根际通气状况对盐胁迫下棉花幼苗生长的影响. 植物学报 51, 16-23.
[12] 阙玉林 ( 2009). 福鼎大白茶扦插育苗技术. 农业科技通讯 ( 1), 142-143.
[13] 施嘉璠 ( 1992). 茶树栽培生理学. 北京: 中国农业出版社. pp. 173-177.
[14] 孙绪聪, 卜凡军, 郑海涛, 张艳艳, 牟朴 ( 2018). 不同基质对茶树短穗扦插成活率的影响. 中国园艺文摘 34(5), 31-32, 69.
[15] 孙仲序, 刘静, 刘志荣, 邱治霖 ( 2001). 山东茶树扦插育苗技术研究. 山东农业大学学报(自然科学版) 32, 285-288.
[16] 陶乃奇, 张斌, 刘信凯, 周和达, 钟乃盛, 严丹峰, 张敏, 高继银, 张文驹 ( 2019). 利用荧光标记SSR鉴别21个茶花新品种. 植物学报 54, 37-45.
[17] 王爱杰, 黄彩梅, 刘海燕, 邹天才 ( 2011). 茶树种子繁殖与幼苗优化培育的探讨. 种子 30(8), 105-107.
[18] 王立 ( 1993). 茶树扦插生根的理论与实践. 中国茶叶 15(5), 2-4.
[19] 王雪萍, 龚自明, 高士伟, 郑鹏程, 叶飞, 滕靖, 王胜鹏, 郑琳, 刘盼盼 ( 2016). 不同处理对茶树穴盘扦插生根的影响. 浙江农业科学 57, 1052-1054, 1060.
[20] 吴练荣 ( 2003). 浅谈茶树插穗留养时期与扦插适期. 茶业通报 25, 68.
[21] 吴淑平, 吕立哲, 郑杰, 任红楼, 党永超, 蒋双丰 ( 2014). 茶树短穗扦插成活率的影响因素探析. 河南农业科学 43(10), 34-37.
[22] 吴婉婉, 孙威江, 陈志丹 ( 2018). 福鼎大白茶高效离体再生体系的优化. 中国茶叶 40(9), 22-25.
[23] 向安清, 覃文波 ( 2018). 茶树露地规模扦插技术. 中国茶叶 40(6), 42-43.
[24] 杨亚军, 虞富莲, 陈亮, 曾建明, 杨素娟, 李素芳, 束际林, 舒爱民, 章志芳, 王玉书, 王海思, 王平盛, 许玫, 宋维希, 郭吉春, 杨如兴, 张文锦, 陈志辉 ( 2003). 茶树优异资源评价与遗传稳定性研究. 茶叶科学 23, 1-8.
[25] 余根梅 ( 2012). 茶苗短穗扦插技术. 现代农业科技( 10), 71, 73.
[26] 曾建明, 谷保静, 常杰, 袁海波, 王丽鸳, 董方帅, 成浩, 周健, 葛滢, 陈圣伦 ( 2005). 茶树工厂化育苗适宜基质水分条件研究. 茶叶科学 25, 270-274.
[27] 张明泽, 尹晓爱, 杨小礼, 姚玉仙 ( 2016). 外源刺激物质对茶树扦插繁殖的影响研究. 湖南农业科学 ( 12), 51-54.
[28] 张文驹, 戎俊, 韦朝领, 高连明, 陈家宽 ( 2018). 栽培茶树的驯化起源与传播. 生物多样性 26, 357-372.
[29] 周春发, 俞虹莺 ( 1999). 茶树扦插育苗试验. 福建茶叶 ( 3), 17-18.
[30] 周健, 成浩, 王丽鸳 ( 2005). 激素处理对茶树组培苗温室内直接诱导生根的影响. 茶叶科学 25, 265-269.
[31] Liu Y, Wang DZ, Zhang SZ, Zhao HM ( 2015). Global expansion strategy of Chinese herbal tea beverage. Adv J Food Sci Technol 7, 739-745.
[32] Wei CL, Yang H, Wang SB, Zhao J, Liu C, Gao LP, Xia EH, Lu Y, Tai YL, She GB, Sun J, Cao HS, Tong W, Gao Q, Li YY, Deng WW, Jiang XL, Wang WZ, Chen Q, Zhang SH, Li HJ, Wu JL, Wang P, Li PH, Shi CY, Zheng FY, Jian JB, Huang B, Shan D, Shi MM, Fang CB, Yue Y, Li FD, Li DX, Wei S, Han B, Jiang CJ, Yin Y, Xia T, Zhang ZZ, Bennetzen JL, Zhao SC, Wan XC ( 2018). Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115, E4151-E4158.
[33] Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ ( 2017). The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10, 866-877.
[1] Zhenxing Wang 艳华 齐. Optimization of Tissue Culture and Plant Regeneration System of Mature Embryo of Leymus chinensis [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[2] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[3] Feng Ying, Qian Lianwen, Lin Qingliang. The Effect of Different Hormones on Explant Browning and Callus Browning in Cyclocarya paliurus [J]. Chin Bull Bot, 2019, 54(5): 634-641.
[4] Zhang Xuhong, Wang Di, Liang Zhenxu, Sun Meiyu, Zhang Jinzheng, Shi Lei. Callus Induction and Establishment of a Plant Regeneration System with Lilium martagon [J]. Chin Bull Bot, 2018, 53(6): 840-847.
[5] Wenju Zhang,Jun Rong,Chaoling Wei,Lianming Gao,Jiakuan Chen. Domestication origin and spread of cultivated tea plants [J]. Biodiv Sci, 2018, 26(4): 357-372.
[6] Dapeng Wang, Jiaze Tang, Mingcheng Shao, Wenbiao Zhang, Huafang Wang. Rooting Induced on in vitro Leaves and Fresh Cuttings of Populus euphratica [J]. Chin Bull Bot, 2017, 52(2): 210-217.
[7] Qun Zhang, Xiuli Lü, Xiaoli He, Yi Zhu, Xinhong Cui. A Rapid Propagation System for Scirpus × mariqueter [J]. Chin Bull Bot, 2016, 51(5): 684-690.
[8] Fang Liu, Yinghong Tang, Youmei Yuan, Qingquan Guo, Fan Shen, Jianrong Chen. Tissue Culture of the Succulent Plant Sedum clavatum [J]. Chin Bull Bot, 2016, 51(2): 251-256.
[9] Meiping Lü, Yuanzhong Wang, Hengyu Huang. Callus Induction and High Efficiency Plant Regeneration System Establishment of Pararuellia delavayana [J]. Chin Bull Bot, 2016, 51(1): 89-97.
[10] Feng Hu, Qiong Shi, Liejian Huang. Acacia melanoxylon Callus Induction and Shoot Regeneration System [J]. Chin Bull Bot, 2014, 49(5): 603-610.
[11] Qinghong Zhang, Liyun Tang, Shaojin Situ, Sha Wang, Guozhen He. Tissue Culture of the Medicinal Plant Gardenia jasminoides [J]. Chin Bull Bot, 2014, 49(3): 331-336.
[12] Decheng Xu, Xiaojing Wang. Axillary Bud Propagation and Regeneration from Stem Segment Explants in Calophyllum inophyllum [J]. Chin Bull Bot, 2014, 49(2): 167-172.
[13] Xiaofeng Wu, Ruoyang Hu, Xuedong Li. Spore Germination and Callus Induction of Atrichum undulatum [J]. Chin Bull Bot, 2013, 48(6): 651-657.
[14] Yuji Lian, Guangzhe Lin, Xiaomei Zhao. Histology and Development Analysis of Meristematic Nodules from Cultured Pulsatilla koreana [J]. Chin Bull Bot, 2013, 48(5): 540-549.
[15] Lin Liu, Bin Yu, Pengyan Huang, Jun Jia, Hua Zhao, Junhua Peng, Peng Chen, Liangcai Peng. Frequency of Callus Induction and Plant Regeneration Among Eight Genotypes in Miscanthus sinensis Species [J]. Chin Bull Bot, 2013, 48(2): 192-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .