Chinese Bulletin of Botany ›› 2016, Vol. 51 ›› Issue (6): 782-789.doi: 10.11983/CBB15210

Previous Articles     Next Articles

Community Succession of Macrophytes in the Middle and Lower Reaches of the Hanjiang River

Wei Guo1,2, Xusheng Gong1,2, Xuwei Deng1,2, Zhengxiang Wang1,2, Zhongqiang Li1,2*   

  1. 1Hubei Key Laboratory of Regional Development and Environmental Response, Wuhan 430062, China
    2School of Resource and Environmental Science, Hubei University, Wuhan 430062, China
  • Received:2015-11-29 Accepted:2016-03-25 Online:2016-12-02 Published:2016-11-01
  • Contact: Li Zhongqiang E-mail:lizhq@hubu.edu.cn
  • About author:

    # Co-first authors

Abstract:

Aquatic plants are an important part of river ecosystems, and study of the composition and succession of river aquatic plant communities is important for diagnosing river ecosystem health. In this study, we studied the aquatic plant diversity in the middle and lower reaches of the Hanjiang River, especially the species and community diversity, by field investigation in September 2013 and June 2014. We found 69 species of macrophytes belonging to 28 families, with 49 genera. The dominant species were Potamogeton perfoliatus, P. malaianus, Phragmites australis, Triarrhena lutarioriparia and Alternanthera philoxeroides. The pattern of macrophyte community succession was from submerged to emergent macrophyte community. The main reasons for species replacement and community succession of aquatic plants were human disturbances such as sand-excavation and pollution and natural factors such as water-level fluctuation, river sediment and reproduction strategy. Our study provides a scientific basis for the protection and ecological restoration of macrophytes and river ecosystem in the middle and lower reaches of the Hanjiang River.

Table 1

Site distribution of aquatic plant community in mid- lower Hanjiang River"

Site distribution Possession city Distance between site distribution and estuary (km)
Sanguandian Danjiangkou 636.45
Jiangjiazhou Gucheng 598.35
Zhangwan Xiangyang 521.37
Qianying Xiangyang 503.22
Yaowan Yicheng 458.18
Huangzhuang Zhongxiang 379.13
Shayang Jingmen 289.72
Zekou Qianjiang 235.32
Yuekou Tianmen 183.62
Guanyintang Xiantao 153.81
Caidian Wuhan 42.41
Zongguan Wuhan 9.35

Table 2

The biomass and distribution of aquatic plant communities in mid-lower Hanjiang River in different periods"

Site Year
2002 2013-2014
Major community type Biomass
(g·m-2)
Coverage
(%)
Major community type Biomass
(g·m-2)
Coverage
(%)
Danjiangkou 1. Ass. Potamogeton perfoliatus+ Hydrilla verticillata+P. maackianus
2. Ass. P. malaianus
2100 95 1. Ass. P. perfoliatus+P. maac- kianus
2. Ass. P. malaianus+Myriophy- llum spicatum
9320 85
Laohekou 1. Ass. Typha angustifolia+ Phragmites australis
2. Ass. P. pectinatus+P. malaianus
1575 90
Gucheng 1. Ass. P. malaianus+P. perfoliatus 12128 100
Xiangyang 1. Ass. P. pectinatus+P. Perfoliatus
2. Ass. P. malaianus+ Hydrocha- ris dubia
12025 70 1. Ass. Salvinia natans-Vallisn- eria natans
2. Ass. Alternanthera philoxeroides
3. Ass. Artemisia selengensis
7789 75
Yicheng 1. Ass. Hydrocharis Verticillata+ P. pectinatus 7680 70
Zhongxiang 1. Ass. Scirpus triangulatus-A. philoxeroides
2. Ass. Trapa bispinosa- V. natans+C. demersum
8156 90
Shayang 1. Ass. Spirodela polyrrhiza
2. Ass. H. dubia+C. demersum
2717 70
Qianjiang 1. Ass. Typha angustifolia+Phra- gmites australis
2. Ass. P. malaianus+M. spicatum
2025 40 1. Ass. S. triangulatus-Hemar- thria altissima
2. Ass. P. australis+T. lutariori- paria
3. Ass. M. spicatum+P. crispus
3825 77
Tianmen 1. Ass. P. paspaloides+E. ophiuroides
2. Ass. P. australis-P. paspalo- ides
3795 85
Xiantao 1. Ass. A. philoxeroides 375 90 1. Ass. P. australis+T. lutarioriparia
2. Ass. Conyza canadensis+P. australis+T. lutarioriparia
4235 68
Caidian 1. Ass. C. demersum+M. Spicatum
2. Ass. A. philoxeroides
57.5 90 1. Ass. Eremochloa ophiuroides 400 90

Table 3

Variation of acstival aquatic plant associations in mid-lower Hanjiang River"

Vegetation type Year
2002 2013-2014
Number of
associations
Ratio of total
associations (%)
Number of
associations
Ratio of total
associations (%)
Submerged macrophytes association 7 70 6 31.58
Floating macrophytes association 0 0 3 15.79
Floating-leaved macrophytes association 0 0 1 5.26
Emergent macrophytes association 3 30 3 15.79
Hygrophytes association 0 0 6 31.58
Total 10 100 19 100

Table 4

The quantitative features of typical community in mid-lower Hanjiang River in different periods"

Site Year
2003 2013-2014
Species Relative frequency
(%)
Relative biomass
(%)
Dominance value
(%)
Species Relative frequency
(%)
Relative biomass
(%)
Dominance
value
(%)
Danjiangkou Myriophyllum spicatum 13.33 59.05 36.19 Potamogeton perfoliatus 14.82 32.04 23.43
P. perfoliatus 17.78 10.95 14.36 P. maackianus 12.34 28.04 20.19
P. maackianus 11.11 16.67 13.89 P. malaianus 18.04 13.13 15.59
Laohekou P. pectinatus 6.82 59.45 33.13
P. perfoliatus 18.18 9.97 14.07
P. malaianus 11.36 15.95 13.66
Gucheng P. malaianus 31.71 22.09 26.9
P. perfoliatus 22.79 15.48 19.14
Xiangyang Vallisneria natans 19.15 11.58 15.37
Hydrocharis verticillata 14.18 7.67 10.93
Yicheng H. verticillata 20.65 29.06 24.86
P. pectinatus 13.54 11.96 12.75
Zhongxiang Scirpus triangu- latus 26.77 19.21 22.99
Alternanthera philoxeroides 23.64 18.16 20.9
Shayang S. polyrrhiza 32.35 19.52 25.94
A. philoxeroides 14.28 25.35 19.82
Qianjiang Typha angustifolia 14.3 77.81 46.06 S. triangulates 25.61 13.89 19.75
M. spicatum 42.85 17.26 30.05 P. australis 11.04 21.05 16.05
P. malaianus 42.85 1.93 23.89 T. arioriparia 9.44 14.23 11.84
Tianmen P. paspaloides 29.11 26.25 27.68
P. australis 10.13 30.31 20.22
Xiantao P. australis 22.61 33.33 27.97
T. arioriparia 21.28 24.64 22.96
Caidian Ceratophyllum mdemersum 28.57 80.64 54.61 Eremochloa ophiuroides 47.36 28.26 37.81
A. philoxeroides 57.14 7.53 32.33 A. philoxeroides 21.74 23.54 22.64
[1] 陈洪达 (1980). 武汉东湖水生维管束植物群落的结构和动态. 海洋与湖沼 11, 275-284.
[2] 戈峰 (2008). 现代生态学(第二版). 北京: 科学出版社. pp. 340-343.
[3] 谷金普, 葛继稳, 唐佳, 吴述园 (2014). 古夫河着生藻类优势种生态位研究. 长江流域资源与环境 23, 1456-1463.
[4] 李爱民, 高振美, 段娟娟 (2014). 人类干扰对洪泽湖湿地植被分布格局的影响. 湿地科学与管理 10, 57-60.
[5] 李慧, 刘妍, 范亚文, 国超旋 (2014). 三江平原湿地同江地区水域夏季浮游植物群落结构特征. 植物学报 49, 440-449.
[6] 李君, 周琼, 谢从新, 王军, 韦丽丽 (2014). 新疆额尔齐斯河周丛藻类群落结构特征研究. 水生生物学报 38, 1033-1039.
[7] 李中强, 任慧, 郝梦曦 (2012). 斧头湖水生植物多样性及群落演替研究. 水生生物学报 36, 1018-1026.
[8] 沈亚强, 张晓可, 赵伟华 (2011). 黄河干流河岸带植物群落特征及其影响因子分析. 水生生物学报 35, 51-66.
[9] 吴中华, 于丹, 涂芒辉 (2002). 汉江水生植物多样性研究. 水生生物学报 26, 348-356.
[10] 吴中华, 于丹, 王东 (2003). 汉江水生植物群落的结构与数量特征. 植物生态学报 27, 118-124.
[11] 吴振斌 (2011). 水生植物与水体生态修复. 北京: 科学出版社. pp. 27-28.
[12] 吴振斌, 陈德强, 邱东茹 (2003). 武汉东湖水生植被现状调查及群落演替分析. 重庆环境科学 25, 54-58.
[13] 徐新伟, 吴中华, 于丹 (2002). 汉江中下游水生植物多样性及南水北调工程对其影响. 生态学报 22, 1933-1938.
[14] 严国安, 马剑敏, 邱东茹, 吴振斌 (1997). 武汉东湖水生植物群落演替的研究. 植物生态学报 21, 319-327.
[15] 杨龙元, 梁海棠, 胡维平 (2002). 太湖北部滨岸区水生植被自然修复观测研究. 湖泊科学 14, 60-66.
[16] 姚鑫, 杨桂山, 万荣荣 (2014). 水位变化对河流、湖泊湿地植被的影响. 湖泊科学 26, 813-821.
[17] 于丹 (1995). 激流植物群落生态学研究. 水生生物学报 19, 31-39.
[18] 章光新 (2012). 水文情势与盐分变化对湿地植被的影响研究综述. 生态学报 32, 4254-4260.
[19] 周万平, 郭晓鸣, 陈伟民 (1994). 南水北调东线一期工程对洪泽湖水生生物及生态环境影响的预测. 湖泊科学 6, 131-135.
[20] Rexford D (陈庆诚译) (1981). 植物群落——植物群落生态学教程. 北京: 人民教育出版社. pp. 113-183.
[21] Alahuhta J (2015). Geographic patterns of lake macrophyte communities and species richness at regional scale.J Veg Sci 26, 564-575.
[22] Barko JW, Gunnison D, Carpenter SR (1991). Sediment interactions with submerged macrophyte growth and com- munity dynamics.Aquat Bot 41, 41-65.
[23] Capers R, Selsky R, Bugbee GJ (2010). The relative importance of local conditions and regional processes in structuring aquatic plant communities.Freshwater Biol 55, 952-966.
[24] Cook CDK (1990). Aquatic Plant Book. The Hague. Nether- lands: SPB Academic Publishing. pp. 1-6.
[25] Coops H, Beklioglu M, Crisman TL (2003). The role of water-level fluctuations in shallow lake ecosystems-work- shop conclusions.Hydrobiologia 506, 23-27.
[26] Dalton RL, Boutin C, Pick FR (2015). Nutrients override atrazine effects on riparian and aquatic plant community structure in a North American agricultural catchment.Fre- shwater Biol 60, 1292-1307.
[27] Forman RTT (1995). Land mosaics—the ecology of land- scape and regions. New York: Cambridge University Pre- ss. pp. 23-25.
[28] Hey RD (1994). Impact of flood alleviation schemes on aquatic macrophytes.Regul River Res Manage 9, 103-119.
[29] Jones JI, Collins AL, Naden PS, Sear DA (2012). The relationship between fine sediment and macrophytes in rivers.River Res Appl 28, 1006-1018.
[30] Kaenel BR, Heinrich B, Urs U (2000). Effects of aquatic plant management on stream metabolism and oxygen balance in streams.Freshwater Biol 45, 85-95.
[31] May L, Carvalho L (2010). Maximum growing depth of macrophytes in loch leven, Scotland, United Kingdom, in relation to historical changes in estimated phosphorus loading.Hydrobiologia 646, 123-131.
[32] Melzer A (1999). Aquatic macrophytes as tools for lake management.Hydrobiologia 396, 181-190.
[33] Nǒges P, Tuvikene L, Nǒges T, Kisand A (1999). Primary production, sedimentation and resuspension in large shal- low Lake Vortsjarv. Aquat Sci 61, 168-182.
[34] OZkan K, Jeppesen E, Johansson LS, Beklioglu M (2010). The response of periphyton and submerged mac- rophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment.Freshwater Biol 55, 463-475.
[35] Pinguet YL, Liancourt P, Gross N, Straile D (2012). Indi- rect facilitation promotes macrophyte survival and growth in freshwater ecosystems threatened by eutrophication.J Ecol 100, 530-538.
[36] Titus JE (1992). Submersed macrophyte growth at low pH II. CO2×sediment interactions.Oecologia 92, 391-398.
[37] Van OM, Van GN, Maltby E, Mockler N, Spink A, Verhoeven J (2000). Experimental manipulation of water levels in two French riverine grassland soils.Acta Oecol 21, 49-62.
[38] Wu AP, Wu SK, Ni LY (2005). Study of macrophytes nitro- gen and phosphorus contents of the shallow lakes in the middle reaches of Changjiang River.Acta Hydrobiol Si- nica 29, 406-412.
[39] Zuidam BG, Peeters ET (2015). Wave forces limit the establishment of submerged macrophytes in large shallow lakes.Limnol Oceanogr 60, 1536-1549.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chinese Bulletin of Botany, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chinese Bulletin of Botany, 1990, 7(02): 50 -52 .
[3] . [J]. Chinese Bulletin of Botany, 1999, 16(增刊): 45 -46 .
[4] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chinese Bulletin of Botany, 1998, 15(03): 69 -72 .
[5] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chinese Bulletin of Botany, 1998, 15(02): 14 -22 .
[6] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chinese Bulletin of Botany, 2014, 49(2): 209 -220 .
[7] . [J]. Chinese Bulletin of Botany, 2013, 48(1): 4 -5 .
[8] . [J]. Chinese Bulletin of Botany, 1996, 13(专辑): 45 .
[9] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chinese Bulletin of Botany, 1998, 15(06): 73 -78 .
[10] ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plan Ecolo, 2007, 31(6): 1079 -1091 .