Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (6): 774-.doi: 10.11983/CBB15206

Previous Articles     Next Articles

Chunju Yang1,2, Yonggang Chen1,2*, Mengping Tang1,2, Yongjun Shi1,2, Jianhua Hou3, Yanfei Sun4   

  1. 11School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an 311300, China
    2Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Lin’an 311300, China
    3Jingning Forestry Bureau, Jingning 323500, China
    4School of Information Engineering, Zhejiang Agriculture and Forestry University, Lin’an 311300, China
  • Received:2015-12-10 Accepted:2016-06-13 Online:2016-12-02 Published:2016-12-10
  • Contact: Chen Yonggang E-mail:506969278@qq.com
  • About author:

    # Co-first authors

Abstract:

To examine the characteristics of the Moso bamboo growth process, we selected 140 young plants in Qingshan of Zhejiang province to measure the height and observe the growth trend under 2 management models: intensive and extensive. The whole growth process of bamboo shoots was continuously monitored for 57 days. The trend was quantified by height every day. Growth characteristics of young bamboo were analyzed by non-parametric hypothesis test and correlation analysis. Growth rate showed an obvious stage change characteristic, and curves between time and growth rate tended to be a bell shaped, with maximal peak at the right side. The growth rate of young bamboo was slow during the first 15 days and rapidly increased from days 15 to 45, then tended to decrease after 45 days. The growth rate differed in different stages, but the degree of growth was similar between intensive and extensive management. Growth rate variance was small during the first 20 days and then severely fluctuated after 20 days. Growth rate did not differ between intensive and extensive management during the first 10 and last 15 days. The difference in growth rate between intensive and extensive management fluctuated from days 11 to 28. Growth rate significantly differed between intensive and extensive management from days 29 to 40. The findings may guide M. bamboo management and forest research in theory.

Table 1

The statistical table of young bamboo height (unit: cm) under extensive management model"

Time (d) Average
(cm)
Time (d) Average
(cm)
Time (d) Average
(cm)
Time (d) Average
(cm)
1 2.95 16 22.60 31 302.22 46 1102.62
2 4.48 17 25.03 32 359.53 47 1151.59
3 5.75 18 27.50 33 414.37 48 1195.15
4 7.16 19 30.79 34 466.10 49 1234.87
5 8.35 20 35.66 35 519.33 50 1272.80
6 9.32 21 41.35 36 577.44 51 1310.51
7 10.21 22 48.37 37 623.08 52 1338.12
8 11.17 23 58.98 38 674.48 53 1359.88
9 12.53 24 74.67 39 717.95 54 1375.80
10 13.79 25 96.72 40 770.15 55 1383.17
11 14.73 26 124.33 41 822.86 56 1389.04
12 15.79 27 153.60 42 877.58 57 1389.63
13 16.91 28 189.76 43 935.37
14 18.56 29 228.49 44 993.77
15 20.45 30 258.13 45 1050.57

Table 2

The statistical table of young bamboo height (unit: cm) under intensive management model"

Time (d) Average
(cm)
Time (d) Average
(cm)
Time (d) Average
(cm)
Time (d) Average
(cm)
1 3.91 16 22.32 31 253.89 46 1037.29
2 5.06 17 24.40 32 285.41 47 1085.78
3 6.03 18 26.86 33 345.85 48 1131.96
4 7.37 19 29.37 34 403.09 49 1175.77
5 8.75 20 32.61 35 464.73 50 1220.91
6 10.03 21 37.85 36 510.46 51 1256.84
7 11.18 22 42.74 37 572.94 52 1284.08
8 12.66 23 49.12 38 626.51 53 1310.76
9 14.27 24 58.14 39 672.76 54 1329.83
10 15.29 25 72.24 40 715.67 55 1334.20
11 16.13 26 94.56 41 754.97 56 1339.78
12 16.87 27 123.24 42 804.21 57 1339.78
13 17.59 28 151.89 43 861.96
14 19.20 29 190.29 44 912.84
15 20.93 30 232.26 45 976.89

Figure 1

Curves between growth rate (95% confidence intervals) of bamboo and time under intensive (A) and extensive (B) management models"

Figure 2

Time-scale curves of change ratio of growth rate of bamboo under intensive (A) and extensive (B) management models"

Figure 3

Comparison of median of growth rate of bamboo between different management models"

Table 3

Wilcoxon test for growth rate of young bamboo under intensive and extensive management models"

No. W P-value H No. W P-value H
1 845.5 0.036 1 29 1646.5 0.000 0
2 901.0 0.091 1 30 139.5 0.000 0
3 1060.5 0.618 1 31 214.0 0.000 0
4 1220.5 0.493 1 32 1332.5 0.129 1*
5 1397.0 0.045 1 33 1631.5 0.000 0
6 1376.0 0.065 1 34 1678.5 0.000 0
7 1442.0 0.019 1 35 459.0 0.000 0
8 1292.0 0.223 1 36 1625.0 0.000 0
9 951.5 0.190 1 37 1563.5 0.000 0
10 1132.5 0.976 1 38 1505.5 0.005 0
11 777.0 0.009 0 39 655.0 0.000 0
12 670.0 0.001 0 40 518.0 0.000 0
13 1138.5 0.941 1 41 974.5 0.327 1
14 1127.5 1.000 1 42 1094.5 0.943 1
15 541.0 0.000 0 43 923.5 0.172 1
16 922.5 0.127 1 44 1327.5 0.092 1
17 1133.5 0.970 1 45 1329.0 0.090 1
18 790.5 0.012 1 46 1211.0 0.320 1
19 757.0 0.006 0 47 1192.0 0.297 1
20 1147.5 0.888 1 48 972.0 0.620 1
21 807.0 0.017 1 49 1227.0 0.128 1
22 619.0 0.000 0 50 1082.0 0.578 1
23 485.5 0.000 0 51 994.0 0.828 1
24 505.0 0.000 0 52 871.5 0.763 1
25 822.5 0.023 1 53 624.5 0.700 1
26 1218.5 0.503 1 54 341.5 0.887 1
27 700.0 0.001 0 55 210.0 0.200 1
28 1082.5 0.738 1

Table 4

Ansari-Bradley and Mood tests for disperse degree of growth rate of young bamboo under intensive and extensive management models"

No. Mood test of scale Ansari-Bradley test No. Mood test of scale Ansari-Bradley test
Z P-value H AB P-value H Z P-value H AB P-value H
1 -0.11 0.912 1 1134.50 0.658 1 29 -1.54 0.123 1 1278.50 0.089 1
2 -0.43 0.666 1 1177.00 0.847 1 30 0.67 0.500 1 1109.50 0.416 1
3 0.18 0.855 1 1142.50 0.747 1 31 1.29 0.198 1 1054.00 0.101 1
4 3.34 0.001 0* 938.50 0.001 0* 32 -0.35 0.725 1 1189.50 0.706 1
5 0.89 0.373 1 1103.00 0.363 1 33 1.10 0.272 1 1080.50 0.213 1
6 -0.88 0.377 1 1227.00 0.346 1 34 1.09 0.274 1 1109.50 0.416 1
7 1.89 0.058 1 1054.00 0.099 1 35 -1.53 0.127 1 1278.00 0.090 1
8 -0.49 0.624 1 1188.00 0.721 1 36 1.89 0.059 1 1028.00 0.085 1
9 0.15 0.884 1 1132.50 0.636 1 37 -2.12 0.034 1 1283.50 0.027 1
10 0.87 0.386 1 1120.50 0.520 1 38 -1.37 0.171 1 1240.50 0.255 1
11 0.61 0.545 1 1093.00 0.285 1 39 -0.61 0.539 1 1208.00 0.514 1
12 0.70 0.484 1 1121.00 0.518 1 40 -1.14 0.254 1 1190.00 0.348 1
13 -1.40 0.162 1 1255.50 0.174 1 41 -1.73 0.084 1 1212.50 0.201 1
14 -0.99 0.321 1 1229.50 0.343 1 42 -1.38 0.169 1 1204.50 0.247 1
15 0.14 0.890 1 1159.00 0.939 1 43 -1.72 0.085 1 1237.50 0.099 1
16 -0.72 0.471 1 1205.50 0.539 1 44 -1.01 0.310 1 1196.50 0.300 1
17 0.75 0.453 1 1113.50 0.450 1 45 -0.22 0.826 1 1137.00 0.892 1
18 0.25 0.799 1 1139.50 0.713 1 46 -1.52 0.130 1 1214.00 0.062 1
19 -1.27 0.204 1 1261.00 0.149 1 47 0.09 0.930 1 1077.00 0.950 1
20 -1.27 0.206 1 1222.50 0.384 1 48 0.98 0.327 1 1018.00 0.412 1
21 0.25 0.803 1 1162.00 0.975 1 49 0.48 0.633 1 1077.00 0.907 1
22 0.56 0.576 1 1125.00 0.560 1 50 -1.53 0.125 1 1144.00 0.078 1
23 0.00 1.000 1 1181.50 0.796 1 51 0.67 0.506 1 1007.00 0.927 1
24 1.61 0.107 1 1052.00 0.095 1 52 1.57 0.116 1 794.50 0.047 1
25 -1.06 0.287 1 1235.50 0.288 1 53 -1.03 0.301 1 692.50 0.391 1
26 0.33 0.745 1 1161.50 0.969 1 54 0.30 0.762 1 376.50 0.758 1
27 -0.35 0.729 1 1193.00 0.667 1 55 0.03 0.978 1 334.00 0.894 1
28 -2.20 0.028 1 1293.50 0.054 1
[1] 陈先刚, 张一平, 张小全, 郭颖 (2008). 过去50年中国竹林碳储量变化. 生态学报 28, 5219-5262.
[2] 陈永刚, 汤孟平, 杨春菊, 马天午, 王礼 (2015). 天然毛竹林竞争空间关系分析. 植物生态学报 39, 726-735.
[3] 楚秀丽, 刘青华, 范辉华, 王生华, 陈柳英, 周志春 (2014). 不同生境、造林模式闽楠人工林生长及林分分化. 林业科学研究 27, 445-453.
[4] 贺新强, 李素文 (1999). 毛竹细胞壁自发荧光的显微荧光分光光度分析. 植物学报 41, 711-714.
[5] 侯新毅, 江泽慧, 任海青 (2010). 我国竹子标准体系的构建. 林业科学 46, 85-92.
[6] 江泽慧 (2002). 世界竹藤. 沈阳: 辽宁科学技术出版社.
[7] 江泽慧, 费本华, 范少辉 (2014). 积极发展竹产业, 大力推进生态文明建设. 国家林业局管理干部学院学报 13, 12-16.
[8] 李睿, 钟章成, 维尔格MJA (1997). 毛竹的无性系生长与立竹密度和叶龄结构的关系. 植物生态学报 6, 545-550.
[9] 刘国华, 傅伯杰, 方精云 (2000). 中国森林碳动态及其对全球碳平衡的贡献. 生态学报 20, 734-742.
[10] 刘华军, 郭春兰, 黄敏 (2014). 毛竹出笋及增粗生长规律研究. 江西林业科技 1, 30-31.
[11] 时培建, 郭世权, 杨清培, 王兵, 杨光耀, 方楷 (2010). 毛竹的异质性空间点格局分析. 生态学报 30, 4401-4407.
[12] 施拥军, 刘恩斌, 周国模, 沈振明, 俞淑红 (2013). 基于随机过程的毛竹笋期生长模型构建及应用. 林业科学 49, 89-93.
[13] 吴喜之 (2013). 非参数统计. 北京: 中国统计出版社.
[14] 吴喜之, 赵博娟 (2013). 非参数统计. 北京: 中国统计出版社.
[15] 肖复明, 陈红兴, 江香梅, 李万和, 彭星火, 张小军 (2008). 江西安福林区毛竹林雨雪冰冻灾情调查分析. 林业科学 44, 32-35.
[16] 许庆标, 郭宝华, 范少辉, 苏文会, 赵建成 (2014). 春笋幼竹期毛竹地上生物量格局及养分动态变化规律. 热带作物学报 35, 1481-1486.
[17] 颜杰, 李彩霞, 方积乾, 丁守銮 (2004). 完全随机设计两组t检验与秩和检验的功效比较. 中国卫生统计 21, 10-13.
[18] 张国防, 缪碧华 (2000). 毛竹经营管理的研究进展. 福建林学院学报 20, 375-379.
[19] 郑进烜, 董文渊, 陈冲, 段春香, 赵金发, 卢珍红 (2008). 海子坪天然毛竹种群生长规律研究. 竹子研究汇刊 27, 32-37.
[20] 周国模, 姜培坤 (2004). 毛竹林的碳密度和碳贮量及其空间分布. 林业科学 40, 20-24.
[21] 周国模, 吴家森, 姜培坤 (2006). 不同管理模式对毛竹林碳贮量的影响. 北京林业大学学报 28, 52-60.
[22] Bauer DF (1972). Constructing confidence sets using rank statistics.J Am Statist Assoc 67, 687-690.
[23] Conover WJ (1999). Practical Nonparametric Statistics, 3rd edn. New York: John Wiley & Sons.
[24] Hollander M, Wolfe DA, Chicken E (2013). Nonparametric Statistical Methods. New York: John Wiley & Sons.
[25] Jiang PK, Meng CF, Zhou GM, Xu QF (2011). Comparative study of carbon storage in different forest stands in subtropical China.Bot Rev 77, 242-251.
[26] Li Y, Zhou G, Jiang P, Wu J, Lin L (2011). Carbon accumulation and carbon forms in tissues during the growth of young bamboo (Phyllostachys pubescens).Bot Rev 77, 278-286.
[27] Paul WM (1967). Note on some squared rank tests with existing ties.Technometrics 9, 312-314.
[28] Zeng ZQ, Wang SL, Zhang CM, Gong C, Hu Q (2013). Carbon storage in evergreen broad-leaf forests in mid- subtropical region of China at four succession stages.J Forest Res 24, 677-682.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Huang Jian-qin Zhou Jian Fan Ru-wen. The Observation of Cell phytomorphology of the Double Fertilization and Embryogenesis in Liriodendron Chinense( Hemsl) Sary[J]. Chin Bull Bot, 1995, 12(03): 45 -47 .
[2] Leqin Zhang. Carbon Storage of Forest Vegetation in Chizhou of Anhui Province[J]. Chin Bull Bot, 2011, 46(5): 544 -551 .
[3] Xu Li Lu Rong-zhao and Shi Ding-ji. Comparison of Determining Different Solvents Used in Extracting Chlorophyll a from Cyanohacteria (Blue-Greens)[J]. Chin Bull Bot, 1988, 5(04): 246 -249 .
[4] Li Lian-cheng;Fu Jun-hua;Yuan Hong-li and Yue Shao-xian. Measurement of Photosynthetic Rate in some Varieties of Grain Amaranth[J]. Chin Bull Bot, 1991, 8(02): 31 -33 .
[5] Xinpeng Li Yiping Tong. Physiological and Molecular Basis of Inorganic Nitrogen Transport in Plants[J]. Chin Bull Bot, 2007, 24(06): 714 -725 .
[6] . [J]. Chin Bull Bot, 2007, 24(02): 251 .
[7] Ningguang Dong, Ying Gao, Wei Wang, Weilun Yin, Dong Pei. Immunogold Silver Localization of Indole-3-acetic Acid (IAA) During the Rhizogenesis of In Vitro Poplar[J]. Chin Bull Bot, 2011, 46(3): 324 -330 .
[8] Hu Shi-yi. Block Staining of Feulgen Procedure Used in The Studying of Embryo Sacs[J]. Chin Bull Bot, 1994, 11(01): 57 -58 .
[9] Song Chang-xi. The Metabolism of Proline in Plant Organism[J]. Chin Bull Bot, 1985, 3(02): 10 -15 .
[10] CHENG Hong-Yan SONG Song-Quan. Advances in Nitric Oxide Biology of Plants[J]. Chin Bull Bot, 2005, 22(06): 723 -737 .