Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (3): 290-295.doi: 10.11983/CBB15205

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Identification and Gene Mapping of the nrl7 Mutant in Rice

Wei Wang, Jiayu Wang*, Shenglong Yang, Jin Liu, Xiaoyan Dong, Guojiao Wang, Wenfu Chen   

  1. Collaborative Innovation Center for Genetic Improvement and Quality and Efficient Production of Japonica Rice in the Northeast of China, Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
  • Received:2015-11-16 Revised:2016-01-25 Online:2016-05-24 Published:2016-05-01
  • Contact: Jiayu Wang E-mail:ricewjy@126.com

Abstract:

Leaf morphology is an important trait of ideotype breeding; moderate rolling of leaves can enhance light-use efficiency. Study of genes that control leaf morphology can enrich the theory of ideal plant architecture in rice. We found a novel spontaneous mutant nrl7 with narrow rolled leaves in the japonica C275 population that can be stably inherited. Compared to the wild type, the leaves of nrl7 narrowed and rolled inward, the number of vascular bundles between the leaf midrib and the adjacent vein was reduced to one, and the bulliform cells showed significant morphological change. Nevertheless, the plant height, filled grains per panicle, and filled grain weight per panicle in the mutant were 88.46%, 69.77%, 68.98%, respectively, of that in the wild type. Photosynthetic rate was significantly higher in the mutant than the wild type and accounted for 17% of that in C275. Transpiration rate did not differ. Map-based cloning revealed NRL7 on chromosome 3 between markers RM5444 and MM1300, delimited to a 185.14 kb region. These results will lay a good
foundation for molecular cloning and functional analysis of NRL7.

Key words: rice, narrow rolled leaf mutant, gene mapping

[1] 郎有忠, 张祖建, 顾兴友, 等. 水稻卷叶性状生理生态效应的研究Ⅰ. 姿态、群体构成及广分布特征[J]. 作物学报, 2004, 30(8): 806-810
[2] 陆江锋, 郎有忠, 张祖建, 等. 水稻一组卷叶近等基因系的株形、群体结构和光合特性比较[J]. 扬州大学学报: 农业与生命科学版, 2005, 6(2): 56-60
[3] 陈宗祥, 潘学彪, 胡俊. 水稻卷叶性状及理想株型的关系[J]. 江苏农业研究, 2001, 22(4): 88-91
[4] 沈福成. 关于水稻卷叶性状在育种中利用的几点看法[J]. 贵州农业科学, 1983, (5): 6-8
[5] 陈代波, 程式华, 曹立勇. 水稻窄叶性状的研究进展[J]. 中国稻米, 2010, 16(3): 1-4
[6] 余东, 吴海滨, 杨文韬, 等. 水稻单侧卷叶突变体B157遗传分析及基因初步定位[J]. 分子植物育种, 2008, 6(2): 220-226
[7] 曾生元, 郭 旻, 李 敏, 等. 个水稻动态窄叶突变体的鉴定和基因定位[J]. 科学通报, 2010, 55(21): 210-2111
[8] 潘存红, 李 磊, 陈宗祥, 等.一个水稻卷叶基因 rl(t)的精细定位[J].中国水稻科学, 2011, 25(5): 455-460
[9] Zou L P, Sun X H, hang Z G, et al. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice[J]. Plant Physiology, 2011,156 ( 3 ) : 1589-1602
[10] 王德仲, 桑贤春, 游小庆, 等. 水稻细卷叶突变体 nrl2(t)的遗传分析和基因定位[J]. 作物学报, 2011, 37(7): 1159-1166
[11] Shi Z Y, Wang J, Wan X S, et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J]. Planta, 2007, 226 (1) : 99-108
[12] Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7controls leaf shape mediated by auxin in rice[J]. Molecular Genetics Genomics: MGG, 2008, 279(5): 499-507
[13] Qi J, Qian Q, Bu Q Y, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiology, 2008, 147(4): 1947-195
[14] 李仕贵, 马玉清, 何平, 等. 一个未知的卷叶基因的识别和定位[J]. 四川农业大学学报, 1998, 16(4): 391-393
[15] 邵元健, 陈宗祥, 张亚芳, 等. 一个水稻卷叶主效 QTL的定位及其物理图谱的构建[J]. 遗传学报, 2005, 32(5): 501-506
[16] Xiang J J, Zhang G H, Qian Q, et al. SEMI-ROLLED LEAF1 encodes a putative glycosyl phosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells[J]. Plant Physiology, 2012, 159(4): 1488-1500
[17] Shi Y F, Chen J, Liu W Q, et al. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice( Oryza sativa L.) [J]. Science in China Series C: Life Sciences, 2009, 52(9): 885-890
[18] Yan C J, Yan S, Zhang Z Q, et al.Genetic analysis and gene fine mapping for a rice novel mutant(rl9(t)) with rolling leaf character[J]. Chinese Science Bulletin,2006, 51(1): 63-69
[19] 罗远章, 赵芳明, 桑贤春, 等. 水稻新型卷叶突变体rl12(t)的遗传分析和基因定[J]. 作物学报, 2009, 35(11): 1967-1972
[20] Fang L K, Zhao F M, Cong Y F, et al. Rolling-leaf14 is a 2OG-Fe (Ⅱ) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves[J]. Plant Biotechnology Journal, 2012, 10(5): 524-532
[21] Cho S H, Yoo S C, Zhang H T, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A( OsWOX3A) and function in leaf, spikelet, tiller and lateral root development[J]. New Phytologist, 2013, 198(4): 1071-1084
[22] Hu J, Zhu L, Zeng D L, et al. Identification and characterization of NARROW and ROLLED LEAF1, a novel gene regulating leaf morphology and plant architecture in rice[J]. Plant Molecular Biology, 2010, 73(3): 283-292
[23] 高艳红, 吕川根, 王茂青, 等. 水稻卷叶性状QTL的初步定位[J]. 江苏农业学报, 2007, 23(1): 5-10
[24] 李和平. 植物显微技术[M]. 北京: 科学出版社, 2009: 9-48
[25] Rogers S O, Bendich A J. Extraction of DNA from plant tissues[J]. Plant Mol Biol Manual, 1989, pp73-83
[26] Scarpella E, Barkoulas M, Tsiantis M. Control of leaf and vein development by auxin[J]. Cold Spring Harb Perspect Biol, 2010, 2(1): a001511
[27] Dettmer J, Elo A, Helariutta Y. Hormone interactions during vascular development[J]. Plant Mol Biol, 2009, 69(4): 347-360
[28] Micol L J, Hake S. The development of plant leaves[J]. Plant Physiol, 2003, 131(2): 389-394
[29] 严 松, 严长杰, 顾铭洪. 植物叶发育的分子机理[J]. 遗传, 2008, 30(9): 1127-1135
[30] Shao Y J, Pan C H, Chen Z X, et al. Fine mapping of an incomplete recessive gene for leaf rolling in rice (Oryza sativa L.) [J]. Chin Sci Bull, 2005, 50(21): 2466-2472
[31] Zhang G H, Xu Q, Zhu X D, et al. SHALLOTLIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. Plant Cell, 2009, 2(3): 719-735
[32] Zhang, Z.H., Deng, Y.J., Tan, J., et al. A genome-wide microsatellite polymorphism database for the Indica and Japonica rice[J]. DNA Research, 2007, 14(1): 37-45
[33] 陈宗祥, 胡俊, 陈刚, 潘学彪. RL(t)卷叶基因对杂交稻经济性状的影响[J].作物学报, 2004, 30(5): 465-69

[1] . A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice [J]. Chin Bull Bot, 2020, 55(1): 0-0.
[2] Zhang Tong,Guo Yalu,Chen Yue,Ma Jinjiao,Lan Jinping,Yan Gaowei,Liu Yuqing,Xu Shan,Li Liyun,Liu Guozhen,Dou Shijuan. Expression Characterization of Rice OsPR10A and Its Function in Response to Drought Stress [J]. Chin Bull Bot, 2019, 54(6): 711-722.
[3] Tian Huaidong, Li Jing, Tian Baohua, Niu Pengfei, Li Zhen, Yue Zhongxiao, Qu Yajuan, Jiang Jianfang, Wang Guangyuan, Cen Huihui, Li Nan, Yan Feng. Method for N-methyl-N-nitrosourea Mutagenesis on Hermaphroditic Germ Cells of Rice [J]. Chin Bull Bot, 2019, 54(5): 625-633.
[4] Zhou Chun, Jiao Ran, Hu Ping, Lin Han, Hu Juan, Xu Na, Wu Xianmei, Rao Yuchun, Wang Yuexing. Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1 [J]. Chin Bull Bot, 2019, 54(5): 606-619.
[5] Zhang Shuo, Wu Changyin. Long Noncoding RNA Ef-cd Promotes Maturity Without Yield Penalty in Rice [J]. Chin Bull Bot, 2019, 54(5): 550-553.
[6] Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize [J]. Chin Bull Bot, 2019, 54(5): 547-549.
[7] Liu Dongfeng, Tang Yongyan, Luo Shengtao, Luo Wei, Li Zhitao, Chong Kang, Xu Yunyuan. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 509-514.
[8] Liu Jin, Yao Xiaoyun, Yu Liqin, Li Hui, Zhou Huiying, Wang Jiayu, Li Maomao. Detection and Analysis of Dynamic Quantitative Trait Loci at Three Years for Seed Storability in Rice (Oryza sativa) [J]. Chin Bull Bot, 2019, 54(4): 464-473.
[9] Cheng Xinjie, Yu Hengxiu, Cheng Zhukuan. Protocols for Analyzing Rice Meiotic Chromosomes [J]. Chin Bull Bot, 2019, 54(4): 503-508.
[10] Wang Xiaolin,Wang Ertao. NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice [J]. Chin Bull Bot, 2019, 54(3): 285-287.
[11] Li Lulu, Yin Wenchao, Niu Mei, Meng Wenjing, Zhang Xiaoxing, Tong Hongning. Functional Analysis of Brassinosteroids in Salt Stress Responses in Rice [J]. Chin Bull Bot, 2019, 54(2): 185-193.
[12] Ye Wenlan,Ma Guolan,Yuan liyanan,Zheng Shiyi,Cheng Linqiao,Fang Yuan,Rao Yuchun. Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice [J]. Chin Bull Bot, 2019, 54(2): 277-283.
[13] Yang Dewei,Wang Mo,Han Libo,Tang Dingzhong,Li Shengping. Progress of Cloning and Breeding Application of Blast Resistance Genes in Rice and Avirulence Genes in Blast Fungi [J]. Chin Bull Bot, 2019, 54(2): 265-276.
[14] Chen Lin,Lin Yan,Chen Pengfei,Wang Shaohua,Ding Yanfeng. Effect of Iron Deficiency on the Protein Profile of Rice (Oryza sativa) Phloem Sap [J]. Chin Bull Bot, 2019, 54(2): 194-207.
[15] Xue Zhihui, Chong Kang. Chinese Scientists Make Groundbreaking Discoveries in Clonal Propagation of F1 Hybrids [J]. Chin Bull Bot, 2019, 54(1): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[5] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[6] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[7] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[8] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[9] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .
[10] QIU Dong-Liang, LIU Xing-Hui, GUO Su-Zhi. Effects of Simulated Acid Rain Stress on Gas Exchange and Chlorophyll a Fluorescence Parameters in Leaves of Longan[J]. Chin J Plan Ecolo, 2002, 26(4): 441 -446 .