Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (1): 1-8.doi: 10.11983/CBB15118

    Next Articles

Progress in Cysteine-rich Gibberellic Acid-stimulated Arabidopsis Protein

Chunmei Zhong, Xiaojing Wang*   

  1. Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
  • Received:2015-07-02 Accepted:2015-08-05 Online:2016-02-01 Published:2016-01-01
  • Contact: Wang Xiaojing
  • About author:? These authors contributed equally to this paper


Gibberellic Acid-stimulated Arabidopsis (GASA) protein is a plant-specific cysteine-rich protein family that plays an important role in plant development programs and hormone signal transduction. GASA protein contains a GASA domain with 12 cysteines in highly conserved positions of the amino acid sequences, which is essential for their biochemical function and may be responsible for their protein structure and protein-protein interaction. This review focuses on the current knowledge of protein molecular structure analyses, subcellular location and physiological functions of GASA and discusses future study.

Key words: GASA protein, cysteine-rich protein, small protein, gibberellins

Figure 1

Schematic representation of GASA protein structure"

1 黄先忠, 蒋才富, 廖立力, 傅向东 (2006). 赤霉素作用机理的分子基础与调控模式研究进展. 植物学通报 23, 499-510.
2 刘秋华, 罗曼, 彭建宗, 王小菁 (2015). 水稻OsGASR4基因及其启动子的克隆与表达分析. 华南师范大学学报(自然科学版) 47, 81-86.
3 Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere C (2008). Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants.Mol Plant Pathol 9, 329-338.
4 Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009). Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds.Plant Physiol 150, 1335-1344.
5 Aubert D, Chevillard M, Dorne AM, Arlaud G, Herzog M (1998). Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions.Plant Mol Biol 36, 871-883.
6 Balaji V, Smart CD (2012). Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum).Transgenic Res 21, 23-37.
7 Ben-Nissan G, Lee JY, Borohov A, Weiss D (2004). GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37, 229-238.
8 Ben-Nissan G, Weiss D (1996). The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation.Plant Mol Biol 32, 1067-1074.
9 Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A (2002). Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection.Plant Physiol 128, 951-961.
10 Betz SF (1993). Disulfide bonds and the stability of globular proteins.Protein Sci 2, 1551-1558.
11 Bindschedler LV, Whitelegge JP, Millar DJ, Bolwell GP (2006). A two component chitin-binding protein from French bean—association of a proline-rich protein with a cysteine-rich polypeptide.FEBS Lett 580, 1541-1546.
12 Blanco-Portales R, Bellido ML, Garcia-Caparros N, Medina-Puche L, Caballero-Repullo JL, Gonzalez-Reyes JA, Munoz-Blanco J, Moyano E (2012). The strawberry FaGAST2 gene determines receptacle cell size during fruit development and ripening.FEBS J 279, 82-82.
13 Broekaert WF, Cammue BPA, DeBolle MFC, Thevissen K, DeSamblanx GW, Osborn RW (1997). Antimicrobial peptides from plants.Crit Rev Plant Sci 16, 297-323.
14 Ceserani T, Trofka A, Gandotra N, Nelson T (2009). VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation.Plant J 57, 1000-1014.
15 Cheong JJ, Lee GH, Kwon HB (1999). Expression and regulation of the RSI-1 gene during lateral root initiation.J Plant Biol 42, 259-265.
16 Darby N, Creighton TE (1995). Disulfide bonds in protein folding and stability.Methods Mol Biol 40, 219-252.
17 de la Fuente JI, Amaya I, Castillejo C, Sanchez-Sevilla JF, Quesada MA, Botella MA, Valpuesta V (2006). The strawberry gene FaGAST affects plant growth through inhibition of cell elongation.J Exp Bot 57, 2401-2411.
18 Furukawa T, Sakaguchi N, Shimada H (2006). Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles.Genes Genet Syst 81, 171-180.
19 Harris PWR, Yang SH, Molina A, Lopez G, Middleditch M, Brimble MA (2014). Plant antimicrobial peptides snakin-1 and snakin-2: chemical synthesis and insights into the disulfide connectivity.Chem-Eur J 20, 5102-5110.
20 Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014). A peptide hormone and its receptor protein kinase regulate plant cell expansion.Science 343, 408-411.
21 Herzog M, Dorne AM, Grellet F (1995). GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene.Plant Mol Biol 27, 743-752.
22 Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert VA, Elomaa P, Teeri TH (1999). GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida.Plant Cell 11, 1093-1104.
23 Kovalskaya N, Hammond RW (2009). Expression and functional characterization of the plant antimicrobial sna- kin-1 and defensin recombinant proteins.Protein Expres Purif 63, 12-17.
24 Kwon HB, Lee GH, Cheong JJ (1999). Expression of the RSI-1 gene during development of roots and reproductive organs in tomato.J Plant Biol 42, 266-272.
25 Li KL, Bai X, Li Y, Cai H, Ji W, Tang LL, Wen YD, Zhu YM (2011). GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs.J Plant Physiol 168, 2153-2160.
26 Liu ZH, Zhu L, Shi HY, Chen Y, Zhang JM, Zheng Y, Li XB (2013). Cotton GASL genes encoding putative gibberellin-regulated proteins are involved in response to GA signaling in fiber development.Mol Biol Rep 40, 4561-4570.
27 Mao ZC, Zheng JY, Wang YS, Chen GH, Yang YH, Feng DX, Xie BY (2011). The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper.Phytoparasitica 39, 151-164.
28 Miyakawa T, Hatano K, Miyauchi Y, Suwa Y, Sawano Y, Tanokura M (2014). A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity.Plant Physiol 166, 766-778.
29 Moyano-Canete E, Bellido ML, Garcia-Caparros N, Medina-Puche L, Amil-Ruiz F, Gonzalez-Reyes JA, Caballero JL, Munoz-Blanco J, Blanco-Portales R (2013). FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle.Plant Cell Physiol 54, 218-236.
30 Nahirnak V, Almasia NI, Fernandez PV, Hopp HE, Estevez JM, Carrari F, Vazquez-Rovere C (2012). Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition.Plant Physiol 158, 252-263.
31 Peng JZ, Lai LJ, Wang XJ (2008). PRGL: a cell wall proline-rich protein containning GASA domain in Gerbera hybrida.Sci China Ser C 51, 520-525.
32 Peng JZ, Lai LJ, Wang XJ (2010). Temporal and spatial expression analysis of PRGL in Gerbera hybrida.Mol Biol Rep 37, 3311-3317.
33 Porto WF, Franco OL (2013). Theoretical structural insights into the snakin/GASA family.Peptides 44, 163-167.
34 Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl- Sorteberg HG (2007). GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development.Plant Cell Physiol 48, 471-483.
35 Rubinovich L, Ruthstein S, Weiss D (2014). The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses.Mol Plant 7, 244-247.
36 Rubinovich L, Weiss D (2010). The Arabidopsis cysteine- rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta.Plant J 64, 1018-1027.
37 Segura A, Moreno M, Madueno F, Molina A, Garcia- Olmedo F (1999). Snakin-1, a peptide from potato that is active against plant pathogens.Mol Plant Microbe In 12, 16-23.
38 Shi L, Gast RT, Gopalraj M, Olszewski NE (1992). Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. Plant J 2, 153-159.
39 Silverstein KAT, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007). Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants.Plant J 51, 262-280.
40 Srivastava R, Liu JX, Guo H, Yin Y, Howell SH (2009). Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis.Plant J 59, 930-939.
41 Stes E, Gevaert K, De Smet I (2015). Phosphoproteomics- based peptide ligand-receptor kinase pairing. Commentary on: “A peptide hormone and its receptor protein kinase regulate plant cell expansion”.Front Plant Sci 6, 224.
42 Sun S, Wang H, Yu H, Zhong C, Zhang X, Peng J, Wang X (2013). GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation.J Exp Bot 64, 1637-1647.
43 Taylor BH, Scheuring CF (1994). A molecular marker for lateral root initiation: the RSI-1 gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordia.Mol Gen Genet 243, 148-157.
44 Wang L, Wang Z, Xu YY, Joo SH, Kim SK, Xue Z, Xu ZH, Wang ZY, Chong K (2009). OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice.Plant J 57, 498-510.
45 Wigoda N, Ben-Nissan G, Granot D, Schwartz A, Weiss D (2006). The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity.Plant J 48, 796-805.
46 Wolf S, van der Does D, Ladwig F, Sticht C, Kolbeck A, Schurholz AK, Augustin S, Keinath N, Rausch T, Greiner S, Schumacher K, Harter K, Zipfel C, Hofte H (2014). A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling.Proc Natl Acad Sci USA 111, 15261-15266.
47 Yamada M, Sawa S (2013). The roles of peptide hormones during plant root development.Curr Opin Plant Biol 16, 56-61.
48 Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, Lu C, Li H, Hou C, Li L, Buchanan BB, Chen L, Cheung AY, Li D, Luan S (2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase.Proc Natl Acad Sci USA 109, 14693-14698.
49 Zhang S, Wang X (2011). Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress.J Plant Physiol 168, 2093-2101.
50 Zhang S, Yang C, Peng J, Sun S, Wang X (2009). GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana.Plant Mol Biol 69, 745-759.
51 Zhang SC, Wang XJ (2008). Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis.Chin Sci Bull 53, 3839-3846.
52 Zimmermann R, Sakai H, Hochholdinger F (2010). The gibberellic acid stimulated-like gene family in maize and its role inlateral root development.Plant Physiol 152, 356-365.
[1] Xianzhong Huang;Caifu Jiang;Lili Liao;Xiangdong Fu. Progress on Molecular Foundation of GA Biosynthesis Pathway and Signaling [J]. Chin Bull Bot, 2006, 23(5): 499-510.
[2] LI Xing-Jun LI San-Yu LIN Jin-Xing. On Hypotheses of Controlling Flower_bud Initiation in Fruit Trees by Phytohormone Signals [J]. Chin Bull Bot, 2001, 18(06): 678-683.
[3] ZHONG Xi-Qiong WANG Hui-Zhen. Progress on GA Biosynthesis and Regulationin Higher Plants [J]. Chin Bull Bot, 2001, 18(03): 303-307.
Full text



[1] Lin liang-qiu;Zhang Qing-qi and Wu Wen-shan. A Study on Pollen Morphology of Rosa laevigata and Its Nutrition Composition[J]. Chin Bull Bot, 1994, 11(04): 43 -44 .
[2] Jie Dong;Fenghui Qi;Yaguang Zhan. Establishment of the Suspension Culture System and Optimization of Biosynthesis of Gallic Acid in Acer ginnala[J]. Chin Bull Bot, 2008, 25(06): 734 -740 .
[3] Li Guo-zhen;Qin Ming-bo;Kang Ning-ling;Xie De-yu;Ye He-chun and Li Guo-feng. Tissue Culture and Chromosome Analysis of Arnebia euchroma[J]. Chin Bull Bot, 1992, 9(01): 37 -41 .
[4] Han Bi-wen. The Synthitic Activities of Roots and their Relation to the Above-grond Parts[J]. Chin Bull Bot, 1984, 2(23): 23 -25 .
[5] Guiling Wang;Zhiwei Qin;Xiuyan Zhou;Zhiyun Zhao. Genetic Analysis and SSR Markers of Tuberculate Trait in Cucumis sativus[J]. Chin Bull Bot, 2007, 24(02): 168 -172 .
[6] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens[J]. Chin Bull Bot, 2007, 24(02): 161 -167 .
[7] Hao Zhao;Zhao Xue-chen;Zheng Shu-jun and Qu Chun-ying. Winter Hardiness of Wheat Seedling at Differant Leaf-Age[J]. Chin Bull Bot, 1985, 3(05): 38 -40 .
[8] Chang Huey-ju;Guan Zhong-tian;Zhou Lin and Hsu Kuo-shih. Comparison of two natural cycad communities in China[J]. Chin Bull Bot, 1995, 12(专辑): 52 -58 .
[9] . Positional Information and Plant Development [J]. Chin Bull Bot, 2005, 22(03): 366 -374 .
[10] Deyong Ren, Guanghua He, Yinghua Ling, Xianchun Sang, Zhenglin Yang, Fangming Zhao. Analysis of Quantitative Trait Loci Additive and Epistasis Effects for Panicle Length with Single Segment Substitution Lines in Rice[J]. Chin Bull Bot, 2010, 45(06): 662 -669 .