Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (1): 120-129.doi: 10.11983/CBB14222

Previous Articles     Next Articles

Progress in Inorganic Nitrogen Transport Proteins and Their Phosphorylation Regulatory Mechanism in Arabidopsis

Xi Zhang, Jinxing Lin, Xiaoyi Shan*   

  1. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
  • Received:2014-12-30 Accepted:2015-05-11 Online:2016-02-01 Published:2016-01-01
  • Contact: Shan Xiaoyi E-mail:shanxy@bjfu.edu.cn
  • About author:? These authors contributed equally to this paper

Abstract:

Nitrogen (N) is an essential nutrient element. Its supply and demand imbalance would seriously affect plant growth and development. Inorganic N (nitrate and ammonium radical) is the major N source in plant, with assimilation and transportation depending on synergistic action of various transport proteins. The activity of some inorganic N transporters is regulated at the post-translation level by phosphorylation. This review describes a global picture of the inorganic N transporters including their classification, molecular structure, location and biological function in Arabidopsis. The phosphorylation regulatory mechanisms of some inorganic N transporters are mainly discussed.

Key words: nitrogen, nitrate radical, ammonium radical, transport proteins, phosphorylation

Table 1

The location and physiological function of primary nitrogen transporters in Arabidopsis thaliana"

基因名称 主要组织定位 功能 参考文献
NRT1.1 根表皮、皮层和内皮层细胞、
叶片保卫细胞
双亲和性硝酸根转运和信号感受 Wang et al., 2012
NRT1.2 根表皮细胞 低亲和性硝酸根转运 Wang et al., 2012
NRT1.4 叶柄 调节硝酸根在叶柄和叶片间的分配 Wang et al., 2012
NRT1.6 珠柄 种子发育时的硝酸根供应 Wang et al., 2012
NRT1.7 老叶小叶脉的韧皮部细胞 由老叶到幼叶的硝酸根再分配 Wang et al., 2012
NRT1.8 根木质部薄壁细胞 调节硝酸根从根部到茎部的转运 Wang et al., 2012
NRT1.9 根韧皮部伴胞 调节硝酸根从根部到茎部的转运 Wang et al., 2012
NRT1.11/NRT1.12 成熟叶片主叶脉伴胞 由成熟叶片到幼叶的硝酸根再分配 Hsu and Tsay, 2013
NAXT1 根皮层细胞 硝酸根的外流 Wang et al., 2012
NRT2.1 根表皮和皮层细胞 高亲和性硝酸根转运 Wang et al., 2012
NRT2.2 根部 高亲和性硝酸根转运 Wang et al., 2012
NRT2.4 根表皮细胞 高亲和性硝酸根转运 Wang et al., 2012
NRT2.7 成熟种子 通过转运将硝酸根储存在液泡中 Wang et al., 2012
CLCa/b 叶肉细胞 通过转运将硝酸根储存在液泡中 Wang et al., 2012
SLAC1/SLAH3 保卫细胞 硝酸根的外流 Wang et al., 2012
AMT1;1 根表皮细胞和皮层细胞 铵根离子吸收 Loqué and von Wirén, 2004
AMT1;2 根皮层和内皮层细胞 通过质外体向维管束转运铵根离子 Loqué and von Wirén, 2004
AMT1;3 根表皮细胞和皮层细胞 铵根离子吸收 Loqué and von Wirén, 2004
AMT1;4 花粉 花粉中特异转运铵根离子 Loqué and von Wirén, 2004

Figure 1

NRT1.1 phosphorylation regulatory mechanism (modified from Tsay, 2014)(A) Low nitrate concentration; (B) High nitrate concentration"

Figure 2

SLAC1/SLAH3 phosphorylation regulatory mechanism (modified from Geiger et al., 2011)(A) -ABA; (B) +ABA"

Figure 3

AMT1;1/1;2 phosphorylation regulatory mechanism (modified from Lanquar et al., 2009)(A) Low nitrate concentration; (B) High nitrate concentration"

1 Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S (2011). Anion channels/transporters in plants: from molecular bases to regulatory networks.Annu Rev Plant Biol 62, 25-51.
2 Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjärvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action.Proc Natl Acad Sci USA 109, 10593-10598.
3 Chadwick DR, John F, Pain BF, Chambers BJ, Williams J (2000). Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment.J Agric Sci 134, 159-168.
4 Crawford NM (1995). Nitrate: nutrient and signal for plant growth.Plant Cell 7, 859-868.
5 Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants.Oecologia 78, 9-19.
6 Filleur S, Dorbe M, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001). An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake.FEBS Lett 489, 220-224.
7 Forde BG (2000). Nitrate transporters in plants: structure, function and regulation.Bba-Biomembranes 1465, 219-235.
8 Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999). Three functional transporters for constitutive, diurnally regulated, and starvation indu- ced uptake of ammonium into Arabidopsis roots.Plant Cell 11, 937-947.
9 Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1.Sci Signal 4, a32.
10 Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid K, Grill E (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities.Proc Natl Acad Sci USA 107, 8023-8028.
11 Glass AD, Britto DT, Kaiser BN, Kinghorn JR, Kron- zucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE (2002). The regulation of nitrate and ammonium transport systems in plants.J Exp Bot 53, 855-864.
12 Glass AD, Shaff JE, Kochian LV (1992). Studies of the uptake of nitrate in barley IV. Electrophysiology.Plant Physiol 99, 456-463.
13 Ho CH, Lin SH, Hu HC, Tsay YF (2009). CHL1 functions as a nitrate sensor in plants.Cell 138, 1184-1194.
14 Hsu PK, Tsay YF (2013). Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth.Plant Phy- siol 163, 844-856.
15 Huang NC, Liu KH, Lo HJ, Tsay YF (1999). Cloning and functional characterization of an Arabidopsis nitrate trans- porter gene that encodes a constitutive component of low- affinity uptake.Plant Cell 11, 1381-1392.
16 Javelle A, Morel M, Rodríguez Pastrana BR, Botton B, André B, Marini AM, Brun A, Chalot M (2003). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum.Mol Microbiol 47, 411-430.
17 Jentsch TJ (2008). CLC chloride channels and transporters, from genes to protein structure, pathology and physiology.Crit Rev Biochem Mol 43, 3-36.
18 Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002). Molecular structure and physiological function of chloride channels.Physiol Rev 82, 503-568.
19 Kiba T, Feria-Bourrellier A, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H (2012). The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants.Plant Cell 24, 245-258.
20 Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince A, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014). Nitrate transport and signaling in Arabidopsis.J Exp Bot 65, 789-798.
21 Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wirén N, Frommer WB (2009). Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis.Plant Cell 21, 3610-3622.
22 Lawlor DW, Lemaire G, Gastal F (2001) Nitrogen, Plant Growth and Crop Yield. Berlin: Springer. pp. 343-367.
23 Lea PJ, Azevedo RA (2006). Nitrogen use efficiency. 1. Up- take of nitrogen from the soil.Ann Appl Biol 149, 243-247.
24 Lee SC, Lan W, Buchanan BB, Luan S (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells.Proc Natl Acad Sci USA 106, 21419-21424.
25 Léran S, Muños S, Brachet C, Tillard P, Gojon A, Lacombe B (2013). Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation.Mol Plant 6, 1984-1987.
26 Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J (2010). The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance.Plant Cell 22, 1633-1646.
27 Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass AD (2007). Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster.Plant Physiol 143, 425-433.
28 Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB (2008). Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.Plant Cell 20, 2514-2528.
29 Liu KH, Huang CY, Tsay YF (1999). CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake.Plant Cell 11, 865-874.
30 Liu KH, Tsay YF (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.EMBO J 22, 1005-1013.
31 Loqué D, Lalonde S, Looger LL, Von Wirén N, Frommer WB (2007). A cytosolic trans-activation domain essential for ammonium uptake.Nature 446, 195-198.
32 Loqué D, von Wirén N (2004). Regulatory levels for the transport of ammonium in plant roots.J Exp Bot 55, 1293-1305.
33 Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, Von Wirén N (2006). Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots.Plant J 48, 522-534.
34 Mayer M, Ludewig U (2006). Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana.Plant Biol 8, 522-528.
35 Mei HS, Thimann KV (1984). The relation between nitrogen deficiency and leaf senescence.Physiol Plant 62, 157-161.
36 Miflin BJ, Lea PJ (1976). The pathway of nitrogen assimilation in plants.Phytochemistry 15, 873-885.
37 Nacry P, Bouguyon E, Gojon A (2013). Nitrogen Acquisition by Roots: Physiological and Developmental Mechanisms Ensuring Plant Adaptation to a Fluctuating Resource. Berlin: Springer. pp. 1-29.
38 Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998). Boreal forest plants take up organic nitrogen.Nature 392, 914-916.
39 Neuhäuser B, Dynowski M, Mayer M, Ludewig U (2007). Regulation of NH4+ transport by essential cross talk bet- ween AMT monomers through the carboxyl tails.Plant Physiol 143, 1651-1659.
40 Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass AD (2006). High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1.Plant Physiol 140, 1036-1046.
41 Parker JL, Newstead S (2014). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1.Nature 507, 68-72.
42 Robertson GP, Vitousek PM (2009). Nitrogen in agriculture: balancing the cost of an essential resource.Annu Rev Environ Resour 34, 97-125.
43 Robertson JL, Kolmakova-Partensky L, Miller C (2010). Design, function and structure of a monomeric ClC trans- porter.Nature 468, 844-847.
44 Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007). Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter.Plant Cell 19, 3760-3777.
45 Sekhon GS (1995). Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries.J Contam Hydrol 20, 167-184.
46 Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1.Nature 507, 73-77
47 Tsay YF (2014). Plant science: how to switch affinity.Nature 507, 44-45.
48 Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007). Nitrate transporters and peptide transporters.FEBS Lett 581, 2290-2300.
49 Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter.Cell 72, 705-713.
50 Vert G, Chory J (2009). A toggle switch in plant nitrate uptake.Cell 138, 1064-1066.
51 von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U (2010). CLCb-mediated NO3-/H+ exchange across the tonoplast of Arabidopsis vacuoles.Plant Cell Physiol 51, 960-968.
52 von Wirén N, Merrick M (2004). Regulation and Function of Ammonium Carriers in Bacteria, Fungi, and Plants. Berlin: Springer. pp. 95-120.
53 von Wittgenstein NJ, Le CH, Hawkins BJ, Ehlting J (2014). Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants.BMC Evol Biol 14, 11.
54 Wang YY, Hsu PK, Tsay YF (2012). Uptake, allocation and signaling of nitrate.Trends Plant Sci 17, 458-467.
55 Wang YY, Tsay YF (2011). Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport.Plant Cell 23, 1945-1957.
56 Yuan L, Graff L, Loqué D, Kojima S, Tsuchiya YN, Takahashi H, von Wirén N (2009). AtAMT1;4, a pollen- specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis.Plant Cell Physiol 50, 13-25.
57 Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N (2007). The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.Plant Cell 19, 2636-2652.
[1] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[2] Zhang Jing,Hou Suiwen. Role of Post-translational Modification of Proteins in ABA Signaling Transduction [J]. Chin Bull Bot, 2019, 54(3): 300-315.
[3] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[4] Wang Xiaolin,Wang Ertao. NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice [J]. Chin Bull Bot, 2019, 54(3): 285-287.
[5] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[6] LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(2): 174-184.
[7] CAO Deng-Chao, GAO Xiao-Peng, LI Lei, GUI Dong-Wei, ZENG Fan-Jiang, KUANG Wen-Nong, YIN Ming-Yuan, LI Yan-Yan, Aili PULATI. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains, China [J]. Chin J Plant Ecol, 2019, 43(2): 165-173.
[8] Liu Yaqiong,Hou Suiwen. Research Progress in Protein Phosphorylation in Plant-pathogen Interactions [J]. Chin Bull Bot, 2019, 54(2): 168-184.
[9] Zhen Xiaoxi, Liu Haoran, Li Xin, Xu Fan, Zhang Wenzhong. Heterologous Overexpression of Autophagy-related Gene OsATG8b from Rice Confers Tolerance to Nitrogen/Carbon Starvation and Increases Yield in Arabidopsis [J]. Chin Bull Bot, 2019, 54(1): 23-36.
[10] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[11] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[12] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[13] DIAO Li-Wei,LI Ping,LIU Wei-Xing,XU Shan,QIAO Chun-Lian,ZENG Hui,LIU Ling-Li. Response of plant biomass to nitrogen addition and precipitation increasing under different climate conditions and time scales in grassland [J]. Chin J Plant Ecol, 2018, 42(8): 818-830.
[14] ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680.
[15] Yong BAO, Ying GAO, Xiao-Min ZENG, Ping YUAN, You-Tao SI, Yue-Min CHEN, Ying-Yi CHEN. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China [J]. Chin J Plan Ecolo, 2018, 42(4): 508-516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Tingbo Jiang*;Xinhua Tang;Fengjuan Li;Baojian Ding;Hong Chen. Effects of Ferritin Gene Expression on Transgenic Tobacco for Low Iron Tolerance[J]. Chin Bull Bot, 2008, 25(02): 167 -175 .
[2] GUO Yi-Ming YANG Ying-Gen GUO Zhong-Chen. Current Advances in Anther Culture and Haploid Breeding of Maize[J]. Chin Bull Bot, 2001, 18(01): 23 -30 .
[3] Gu An-gen;Wang Yue-feng;Zhang Shu-ming and Gu Yi. Opinion on the Improvement of the “Hanging Figures of Botany and Plant Physiology II-Vegetative Organs and Reproductive Organs”[J]. Chin Bull Bot, 1992, 9(01): 56 -60 .
[4] YU Bing-Jun LIU You-Liang. Chlorine, Chloride Channel and Chlorine Tolerance in Plants[J]. Chin Bull Bot, 2004, 21(04): 402 -410 .
[5] XU Jie. Purification and Catalytic Property of Glycolate Oxidase from Green Leaves of Brassica parachinensis[J]. Chin Bull Bot, 1998, 15(04): 75 -77 .
[6] ZHANG Hong-Da. [J]. Chin Bull Bot, 2000, 17(专辑): 152 -160 .
[7] . [J]. Chin Bull Bot, 1994, 11(专辑): 66 .
[8] LI Feng-Lin WANG Yu-fei SUN Qi-Gao LI Feng-Lin ZHANG Jian-Ping WANG Xian-Zeng LI Jun-De CHEN Ping-Fu. Stratigraphical Sequence of Diatomaceous Beds within Shanwang Formation, Linqu County, Shandong Province, China[J]. Chin Bull Bot, 2000, 17(专辑): 247 -251 .
[9] . [J]. Chin Bull Bot, 1994, 11(专辑): 78 .
[10] . [J]. Chin Bull Bot, 1994, 11(专辑): 89 .