植物学报 ›› 2015, Vol. 50 ›› Issue (1): 90-99.doi: 10.3724/SP.J.1259.2015.00090

• 研究报告 • 上一篇    下一篇

红树族植物次生木质部附物纹孔的电镜观测

邓传远1,*(), 辛桂亮1, 张万超1, 郭素枝2, 薛秋华1, 赖钟雄3, 叶露莹1   

  1. 1福建农林大学园林学院, 福州 350002
    2福建农林大学生命科学学院, 福州 350002
    3福建农林大学园艺学院, 福州 350002
  • 收稿日期:2013-12-16 接受日期:2014-11-13 出版日期:2015-01-01 发布日期:2015-04-09
  • 通讯作者: 邓传远 E-mail:dengchuanyuan@163.com
  • 作者简介:

    ? 共同第一作者

  • 基金资助:
    福建省教育厅项目(No.JB09295, No.B11041)和海洋公益性行业科研专项(No.201505009-4)

SEM Observations and Measurements of Vestured Pits of the Secondary Xylem in the Tribe Rhizophoreae

Chuanyuan Deng1, *, Guiliang Xin1, Wanchao Zhang1, Suzhi Guo2, Qiuhua Xue1, Zhongxiong Lai3, Luying Ye1   

  1. 1College of Landscape Architecture
    2College of Life Sciences
    3College of Horticulture Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2013-12-16 Accepted:2014-11-13 Online:2015-01-01 Published:2015-04-09
  • Contact: Deng Chuanyuan E-mail:dengchuanyuan@163.com
  • About author:

    ? These authors contributed equally to this paper

摘要:

应用扫描电子显微镜详细观察了红树族4属、10种、1变种植物次生木质部管状分子附物纹孔的分布和形态, 应用Carnoy 2.0软件和扫描电镜下采集的照片, 测定了管间梯状附物纹孔丰富度指标和管间梯状纹孔数量特征指标。结果显示, 红树族植物次生木质部管状分子侧壁具附物纹孔。所观察的植物附物纹孔的分布和形态变化大。附物纹孔丰富度指标与管间梯状纹孔数量特征指标的逐步回归分析表明, 导管侧壁附物纹孔丰富度随纹孔口面积百分比的增大而增大。据此推测, 红树族植物附物纹孔丰富度与纹孔几何构造及数量特征有关。附物纹孔是红树族植物稳定存在的一个木材解剖性状。综合生态-系统演化的观点, 红树族植物具附物纹孔可能是受系统演化关系控制的生态适应结果。

Abstract:

We used SEM to investigate the distribution and micromorphology of vestured pits in the secondary xylem of 10 species and one variety representing all 4 genera within the tribe Rhizophoreae. Richness indexes of intervascular vestured pits and quantitative features of scalariform intervascular bordered pits were measured on SEM images by use of Carnoy 2.0. Vestured pits were present in vessel elements and tracheary elements of secondary xylem of the specimens and varied considerably in distribution and micromorphology. Stepwise regression analysis of richness indexes and quantitative features of scalariform intervascular bordered pits indicated increased richness indexes, including frequency of vestured vessel inner aperture, outer aperture and pit chamber with increasing aperture fraction, which suggests that richness of intervascular vestured pits was associated with the geometric structure of scalariform intervascular bordered pits. We demonstrate consistent occurrence of intervascular vestured pits in the tribe Rhizophoreae from the common presence of intervascular vestured pits in our specimens. In terms of ecophylogeny, vestured pits occurring in the vessel elements and tracheary elements of the secondary xylem of the tribe Rhizophoreae might be an ecologically adaptive character controlled by phylogeny.

图1

红树族植物附物纹孔的分布与微形态 (A) 角果木, 管间纹孔, 导管分子侧壁部分内纹孔口具附物(a), 或不具附物(b); (B) 秋茄, 管间纹孔, 箭头示导管分子侧壁外纹孔口具附物; (C) 红海兰, 导管-薄壁细胞间纹孔, 箭头示导管分子侧壁纹孔室具附物; (D) 红茄苳, 管间纹孔, 导管分子侧壁外纹孔口和纹孔室没有附物(Dh: 纹孔膜水平直径; Dv: 纹孔膜垂直直径; LAOA: 外纹孔口长轴直径; SAOA: 外纹孔口短轴直径); (E) 澳洲角果木, 管间纹孔, 导管分子侧壁内纹孔口没有附物(LAIA: 内纹孔口长轴直径; SAIA: 内纹孔口短轴直径); (F) 红海兰, 管间纹孔, 箭头示导管侧壁内纹孔口具星散点状附物; (G) 红海兰, 导管-薄壁细胞间纹孔, 箭头示导管侧壁内纹孔口具星散点状附物; (H) 美洲大红树, 管间纹孔, 箭头示导管侧壁纹孔室具星散棒状附物; (I) 尖瓣海莲, 导管-薄壁细胞间纹孔, 箭头示导管侧壁外纹孔口具星散丝状附物; (J) 木榄, 管间纹孔, 箭头示导管侧壁外纹孔口具叉状附物; (K) 木榄, 导管-薄壁细胞间纹孔, 箭头示导管侧壁内纹孔口具叉状附物; (L) 红树, 管间纹孔, 箭头示叉状附物常与点状、棒状附物一起分布于内外纹孔口, 并向纹孔室或纹孔口中心突出, 使内外纹孔口的形状呈不规则状; (M) 木榄, 导管-薄壁细胞间纹孔, 箭头示点状与棒状附物相互连接, 聚集成团块状阻塞内纹孔口; (N) 秋茄, 管间纹孔, 箭头示导管侧壁外纹孔口和纹孔室点状(和棒状)聚集附物; (O) 木榄, 导管-薄壁细胞间纹孔, 箭头示导管侧壁内纹孔口点状(和棒状)聚集附物; (P) 海莲, 导管-薄壁细胞间纹孔, 箭头示外纹孔口和纹孔室相互交织的丝状附物, 并延伸到纹孔外; (Q) 角果木, 管间纹孔, 箭头示内纹孔口相互交织的丝状附物, 并延伸到导管内壁; (R) 澳洲角果木, 管间纹孔, 箭头示内纹孔口与导管内壁相连接的成片块状附物"

表1

红树族植物纹孔附物的分布和微形态变化"

Scientific name Inner pit aperture Outer pit aperture Pit chamber
T1 T2 T3 T4 T5 T6 T7 T1 T2 T3 T4 T5 T6 T7 T1 T2 T3 T4 T5 T6 T7
Bruguiera gyrmnorrhiza + + + ++ ++ ++ + + + ++ ++ + ++ + + - - ++ + +
B. parviflora + + - + - - + + + - + - - + + - - - - +
B. sexangula + + + ++ ++ + + + + - + - + ++ + + - - - + +
var.
rhynchuopetala
++ + - + + - - + ++ + + - - - + + - - - - -
Ceriops australis + + + ++ ++ + ++ + + + + - - - ++ + - - - - -
C. tagal ++ + + ++ ++ ++ + ++ + - ++ - + + + ++ - + - - +
Kandelia candel ++ + + ++ ++ ++ + + + + ++ + - ++ + + - - + + +
Rhizophora apiculata + + + ++ ++ + ++ + + - + - - + + - - - + - -
R. mangle + + + ++ ++ + ++ + + + + - - ++ + + + - - - +
R. mucronata + + + + ++ + + + + - + + - + + ++ + - + - -
R. stylosa ++ + + + ++ ++ + + + + + + - + + + - + + + +

表2

红树族10种、1变种植物管间附物纹孔丰富度和管间纹孔的数量特征(平均值±标准差)"

Species FVIA (%) FVOA (%) FVPC (%) Dh
(μm)
Dv
(μm)
LAOA (μm) SAOA (μm) LAIA (μm) SAIA (μm) APf Fap
(%)
PA (μm2) OPA (μm2) IPA (μm2)
Bruguiera
gymnorrhiza
27.77±
44.57
16.40±
36.07
14.53±
34.25
23.47±
7.26
4.72±
1.90
12.56±
7.27
1.98±
1.05
18.62±
7.20
1.43±
0.62
7.56±
6.05
21.10±
9.16
95.68±
67.45
21.31±
19.68
20.94±
12.36
B. parviflora 19.09±
34.63
7.78±
23.00
5.75±
21.40
23.02±
7.50
4.57±
1.03
14.65±
5.97
1.02±
0.78
14.45±
5.62
1.02±
0.58
18.83±
11.66
14.74±
11.90
87.60±
44.24
13.02±
13.73
11.58±
10.60
B. sexangula 26.25±
39.06
15.06±
37.89
6.76±
19.60
27.47±
10.40
3.72±
1.21
21.72±
8.78
1.13±
0.90
17.94±
5.02
1.44±
0.95
24.91±
12.76
23.12±
12.37
83.49±
48.62
20.83±
18.34
20.99±
18.61
B. sexangula var.
rhynchuopetala
20.54±
40.21
11.21±
39.39
4.21±
14.24
23.51±
9.00
3.70±
1.12
17.96±
7.53
0.78±
0.30
12.93±
4.34
1.28±
0.63
25.55±
12.11
16.06±
5.71
74.13±
52.31
12.11±
9.44
13.21±
8.34
Ceriops australis 21.82±
35.69
7.04±
21.32
8.83±
24.26
25.00±
9.14
3.46±
1.05
20.25±
8.07
0.79±
0.48
15.14±
5.58
0.71±
0.44
32.74±
17.60
18.23±
11.00
71.26±
40.25
12.82±
9.06
8.94±
7.87
C. tagal 25.01±
40.81
1.53±
7.97
0.48±
3.09
15.00±
3.78
2.68±
0.99
12.29±
3.63
0.59±
0.21
18.44±
7.58
1.31±
1.10
24.16±
13.64
21.84±
15.01
19.89±
20.22
18.10±
14.75
21.75±
25.90
Kandelia candel 31.56±
39.40
5.82±
18.16
1.04±
8.14
24.76±
7.75
4.98±
1.64
18.90±
5.72
1.42±
0.59
20.91±
7.75
1.33±
0.56
15.28±
6.53
22.13±
7.52
105.31±
71.20
22.89±
15.84
24.10±
18.28
Rhizophora
apiculata
25.94±
35.87
8.83±
22.65
1.71±
7.14
29.84±
10.74
4.80±
1.49
21.30±
9.92
1.28±
1.05
27.98±
11.78
1.67±
0.71
21.62±
14.31
17.86±
9.33
117.43±
68.31
24.25±
34.96
35.69±
20.76
R. mangle 25.97±
37.30
5.82±
19.78
2.17±
13.38
18.03±
5.08
3.33±
0.61
13.82±
4.23
1.03±
0.46
13.32±
4.04
1.23±
1.19
16.04±
7.71
13.57±
9.76
189.41±
63.61
41.48±
13.45
13.14±
15.49
R. mucronata 26.93±
42.66
9.40±
25.61
6.22±
20.95
26.47±
5.77
4.11±
1.17
19.52±
4.08
1.03±
0.44
19.34±
4.77
1.42±
0.50
22.80±
12.01
19.24±
10.79
88.04±
42.51
16.09±
9.57
21.92±
9.58
R. stylosa 34.43±
45.00
26.97±
42.95
15.79±
37.46
18.89±
6.36
2.18±
1.32
11.99±
5.77
1.17±
0.59
18.70±
2.34
1.78±
0.32
14.47±
12.97
41.60±
19.29
33.10±
31.83
9.50±
3.39
26.34±
5.91
PI 0.45 0.94 0.97 0.50 0.56 0.45 0.70 0.54 0.60 0.77 0.67 0.89 0.77 0.75
1 邓传远, 郭素枝, 林鹏 (2004a). 海桑属(Sonneratia)植物的木材结构及其系统演化意义. 热带亚热带植物学报 12, 213-220.
2 邓传远, 林鹏, 郭素枝 (2004b). 海桑属红树植物次生木质部解剖特征及其对潮间带生境的适应. 植物生态学报 28, 392-399.
3 邓传远, 林鹏, 郭素枝 (2004c). 榄李属(Lumnitzera)红树植物的木材解剖学研究. 厦门大学学报(自然科学版) 43, 406-411.
4 Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR (1998). Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock.Can J Bot 76, 1180-1187.
5 Baas P, Wheeler E, Chase M (2000). Dicotyledonous wood anatomy and the APG system of angiosperm classification.Bot J Linnean Soc 134, 3-17.
6 Carlquist S (2001). Comparative Wood Anatomy, 2nd edn. Berlin: Springer Verlag.
7 Carlquist S (2012). How wood evolves: a new synthesis.Botany 90, 901-940.
8 Choat B, Brodie TW, Cobb AR, Zwieniecki MA, Holbrook NM (2006). Direct measurement of intervessel pit membrance hydraulic resistance in two angiosperm tree species.Am J Bot 93, 993-1000.
9 Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM (2004). Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits.J Exp Bot 55, 1569-1575.
10 IAWA Committee (1989). IAWA list of microscopic features for hardwood identification.IAWA Bulletin ns 10, 219-332.
11 Jansen S, Baas P, Gasson P, Lens F, Smets E (2004). Variation in xylem structure from tropics to tundra: evidence from vestured pits.Proc Natl Acad Sci USA 101, 8833-8837.
12 Jansen S, Baas P, Gasson P, Smets E (2003). Vestured pits: do they promote safer water transport?Int J Plant Sci 164, 405-413.
13 Jansen S, Baas P, Smets E (2001). Vestured pits: their occurrence and systematic importance in eudicots.Taxon 50, 135-167.
14 Jansen S, Kitin P, De Pauw H, Idris M, Beeckman H, Smets E (1998a). Preparation of wood specimens for transmitted light microscopy and scanning electron microscopy.Belg J Bot 131, 41-49.
15 Jansen S, Piesschaert F, Smets E (2000). Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships.Am J Bot 87, 20-28.
16 Jansen S, Pletsers A, Rabaey D, Lens F (2008). Vestured pits: a diagnostic character in the secondary xylem of Myrtales.J Trop For Sci 20, 328-339.
17 Jansen S, Robbrecht E, Beeckman H, Smets E (2002). A survey of the systematic wood anatomy of the Rubiaceae.IAWA J 23, 1-67.
18 Jansen S, Smets E, Baas P (1998b). Vestures in woody plants: a review.IAWA J 19, 347-382.
19 Kohonen MM, Helland A (2009). On the function of wall sculpturing in xylem conduits.J Bionics Eng 6, 324-329.
20 Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.New Phytol 190, 709-723.
21 Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S (2013). Embolism resistance as a key mechanism to understand adaptive plant strategies.Curr Opin Plant Biol 16, 287-292.
22 Meylan BA, Butterfield BG (1974). Occurrence of vestured pits in the vessels and fibres of New Zealand woods.NZ J Bot 12, 3-18.
23 Ohtani J, Ishida S (1976). Study on the pit of wood cells using scanning electron microscopy. Report 5. Vestured pits in Japanese dicotyledonous woods.Res Bull CoIl Exp For Hokkaido Univ 33, 407-435.
24 Rabaey D, Lens F, Smets E, Jansen S (2010). The phylogenetic significance of vestured pits in Boraginaceae.Taxon 59, 510-516.
25 Schmitz N, Jansen S, Verheyden A, Kairo JG, Beeckman H, Koedam N (2007). Comparative anatomy of intervessel pits in two mangrove species growing along a natural salin- ity gradient in Gazi Bay, Kenya.Ann Bot 100, 271-281.
26 Schmitz N, Koch G, Schmitt U, Beeckman H, Koedam N (2008). Intervessel pit structure and histochemistry of two mangrove species as revealed by cellular UV microspectrophotometry and electron microscopy: intraspecific variation and functional significance.Microsc Microanal 14, 387-397.
27 Schwarzbach AE, Ricklefs RE (2000). Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morpho- logy.Am J Bot 87, 547-564.
28 Van Vliet GJCM (1976). Wood anatomy of the Rhizophoraceae.Leiden Bot Ser 3, 20-75.
29 Wheeler EA, Baas P, Rodgers S (2007). Variations in dieot wood anatomy: a global analysis based on the Inside Wood database.IAWA J 28, 229-258.
30 Wu J, Ohtani J, Fukazawa K (1989). SEM observations on the vessel wall modifications in Yunnan hardwoods.Res Bull CoIl Exp For Hokkaido Univ 46, 847-939.
31 Wurdack KJ, Davis CC (2009). Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life.Am J Bot 96, 1551-1570.
32 Zweypfenning RCVJ (1978). A hypothesis on the function of vestured pits.IAWA Bull 1, 13-15.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冰玉;苏晓华*;周祥明. 林木花发育的基因调控[J]. 植物学报, 2008, 25(04): 476 -482 .
[2] 蔡继炯 王子卿. 马尾松花粉的形态结构与成分之初探[J]. 植物学报, 1988, 5(03): 167 -169 .
[3] 张福仁 莫日根. 扫描电镜观察花粉断面结构的简易技术[J]. 植物学报, 1992, 9(03): 63 -64 .
[4] 马月萍 陈凡 戴思兰. 植物LEAFY 同源基因的研究进展[J]. 植物学报, 2005, 22(05): 605 -613 .
[5] 林忠平. 植物DNA的分离[J]. 植物学报, 1984, 2(04): 44 -46 .
[6] 刘荣臻 王浩. 腐植酸胺肥料对矿毒土中水稻根部末端氧化酶活力的影响[J]. 植物学报, 1985, 3(06): 21 -23 .
[7] 李志军 刘文哲 胡正海. 甘草根和根状茎的发育解剖学研究[J]. 植物学报, 1994, 11(专辑): 45 .
[8] 李汝娟 尚宗燕 张继祖. 三种绞股蓝植物染色体观察[J]. 植物学报, 1989, 6(04): 245 -247 .
[9] 王台;钱前;袁明;王小菁;杨维才;瞿礼嘉;孔宏智;许亦农;蒋高明;种康. 2009年中国植物科学若干领域重要研究进展[J]. 植物学报, 2010, 45(03): 265 -306 .
[10] 梁士楚. 贵阳喀斯特山地云贵鹅耳枥种群结构和动态初探[J]. 植物生态学报, 1992, 16(2): 108 -117 .